2

PStrag replacements

## St Line Multiple Choice Ex

- 1. What is the distance, in units, between the points (-1,2) and (4,5)?
  - $\sqrt{8}$ A.
  - B.  $\sqrt{16}$
  - C.  $\sqrt{34}$
  - D.  $\sqrt{58}$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| С   | 1.1     | С     | 0.64     | 0.5   | NC         | G1      | HSN 054 |

The distance is  $\sqrt{(4-(-1))^2+(5-2)^2}$  $= \sqrt{25+9}$  $= \sqrt{34}$ . Option C

- PSfrag replacements
  - 2. What is the distance, in units, between the points (a, b) and (-b, a)?
    - A.  $\sqrt{2}\sqrt{a^2+b^2}$
    - B.  $\sqrt{2}(a+b)$
    - C.  $\sqrt{2}\left(\sqrt{a}+\sqrt{b}\right)$
    - D.  $2\sqrt{a^2+b^2}$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| Α   | 1.1     | С     | 0.3      | 0.23  | CN         | G1      | HSN 011 |

$$d^{2} = (\alpha - (-b))^{2} + (b - \alpha)^{2}$$

$$= (\alpha + b)^{2} + (b - \alpha)^{2}$$

$$= (\alpha + b)^{2} + (b - \alpha)^{2}$$

$$= \alpha^{2} + \lambda ab + b^{2} + b^{2} - \lambda ab + \alpha^{2}$$

$$= \lambda a^{2} + \lambda b^{2}$$

$$= \lambda (a^{2} + b^{2})$$

$$= \lambda (\alpha^{2} + b^{2})$$

$$= \lambda ($$

replacements

O

2

3. The line through the points (-2,5) and (7,a) has gradient 3.

What is the value of *a*?

- 8 A.
- 22 В.
- C. 28
- D. 32

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source |
|-----|---------|-------|----------|-------|------------|---------|--------|
| D   | 1.1     | С     | 0.58     | 0.16  | NC         | G2      | HSN 05 |

 $m = \frac{a-5}{7-(-2)} = \frac{a-5}{9} = 3$ .

PSfrag replacements -5 = 27 0 = 32

$$a = 32$$

Option D

4. The equation of a line is 3y = ax + 1 where  $a \neq 0$  is a constant.

Given that the line has a gradient of  $\frac{7}{5}$ , what is the value of a?

- A.  $-\frac{21}{5}$
- B.  $-\frac{7}{5}$
- C.  $\frac{7}{5}$
- D.  $\frac{21}{5}$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| D   | 1.1     | С     | 0.5      | 0.64  | NC         | G2, G4  | HSN 162 |

$$3y = ax + 1$$
  
 $y = \frac{a}{3}x + \frac{1}{3}$ . So  $m = \frac{a}{3}$ . (Compare to)  
 $y = mx + c$ 

$$a = \frac{21}{5}$$

Option D

replacements

PSfrag replacements

O

5. The line with equation y = ax + 4 is perpendicular to the line with equation 3x + y + 1 = 0.

What is the value of *a*?

- A. -3
- B.  $-\frac{1}{3}$
- C.
- D. 3

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| С   | 1.1     | С     | 0.7      | 0.62  | NC         | G2, G5  | HSN 089 |

3x+y+1=0 y=-3x-1. So  $m_1=-3$ . Compare to y=mx+c? The line y=ax+4 has gradient  $m_2=a$ 

Since the lines are perpendicular, mx x m2 = -1, ie

PSfrag replacements

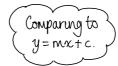
$$-3\alpha = -1$$

$$\alpha = \frac{1}{3}.$$

Option C

replacements

O


6. The line with equation  $y = -\frac{3}{a}x + 4$ , where  $a \neq 0$  is a constant, is perpendicular to the line with equation  $y = \frac{1}{2}x + 1$ .

What is the value of *a*?

- A. -6
- B.  $-\frac{3}{2}$
- C.  $\frac{3}{2}$
- D. 6

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| С   | 1.1     | С     | 0.53     | 0.41  | NC         | G2, G5  | HSN 151 |

The gradient of  $y = -\frac{3}{a}x + 4$  is  $-\frac{3}{a}$ . The gradient of  $y = \frac{1}{a}x + 1$  is  $\frac{1}{a}$ .



So  $-\frac{3}{a} \times \frac{1}{2} = -1$  since the lines are perpendicular.

$$3 = 2a$$

$$\alpha = \frac{3}{2}$$

 $y^{\chi}$  Quest

2

7. The line l passes through (3, -2) and is parallel to the line with equation  $y = \frac{1}{2}x + 5.$ 

What is the equation of l?

A. 
$$x - 2y + 1 = 0$$

B. 
$$x - 2y - 7 = 0$$

C. 
$$x - 2y + 7 = 0$$

D. 
$$x - 2y - 5 = 0$$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source |
|-----|---------|-------|----------|-------|------------|---------|--------|
| В   | 1.1     | C     | 0.57     | 0.39  | CN         | G3      | HSN 06 |

The line  $y = \frac{1}{2}x + 5$  has gradient  $\frac{1}{2}$ . Compare to y=mx+c

$$y - (-2) = \frac{1}{2}(x - 3)$$

$$2y + 4 = x - 3$$

$$x - 2y - 7 = 0.$$

$$2y+4=x-3$$

$$x - 2y - 7 = 0.$$

Option B

8. Find the equation of the line passing through (6, -4) and parallel to the line with equation 2x - 3y - 1 = 0.

A. 
$$2x - 3y - 24 = 0$$

B. 
$$3x + 2y - 10 = 0$$

C. 
$$2x - y - 16 = 0$$

D. 
$$2x - 3y - 18 = 0$$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| Α   | 1.1     | С     | 0.63     | 0.33  | NC         | G3, G2  | HSN 158 |

Method 1 The equation has the form 2x-3y+c=0and passes through (6,-1).

So 
$$2 \times 6 - 3 \times (-4) + c = 0$$

$$12 + 12 + C = 0$$

$$C = -24$$

Method 2  $2x-3y-1=0 \Leftrightarrow 3y=2x-1$   $\Rightarrow y=\frac{2}{3}x-\frac{1}{3}$ So the gradient is  $\frac{2}{3}$ . Comparing to  $y+4=\frac{2}{3}(x-6)$  y=mx+c.

$$\Leftrightarrow \qquad \mathcal{Y} = \frac{2}{3}\chi - \frac{1}{3}$$

$$y + 4 = \frac{x}{3}(x - 6)$$

$$3y + 12 = 2x - 12$$

$$2x - 3y - 24 = 0$$

Option A

replacements




9. A straight line has equation y = -x + 4.

What angle does the line make with the positive direction of the x-axis?

- A. 45°
- B. 120°
- C. 135°
- D. 150°

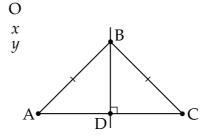
| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| C   | 1.1     | C     | 0.53     | 0.65  | NC         | G4      | HSN 161 |



10. Given that (1,0) is the midpoint of A(-3,a) and B(b,2), what are the values of aand b?

|    | а  | b  |
|----|----|----|
| A. | -2 | 4  |
| В. | -2 | 5  |
| C. | 2  | -5 |
| D. | 4  | -2 |

| 1 | Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|---|-----|---------|-------|----------|-------|------------|---------|---------|
|   | В   | 1.1     | С     | 0.82     | 0.43  | NC         | G6      | HSN 079 |


midpoint<sub>AB</sub> =  $\left(\frac{b-3}{2}, \frac{2+a}{2}\right) = (1,0)$ . So  $\frac{b-3}{2} = 1$  and  $\frac{2+a}{2} = 0$  b-3 = 2 2+a=0 b=5 a=-2. Option B

So 
$$\frac{b-3}{2} = 1$$
 and  $\frac{2+a}{2} = 0$   
 $b-3 = 2$   $2+a=0$ 

 $y^{x}$  Quest

2

PSfrag replacements 11. Triangle ABC is shown below.



Here are two statements about the line BD:

- I. BD is an altitude of triangle ABC
- II. BD is the perpendicular bisector of AC

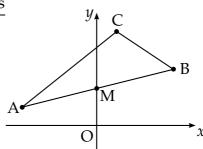
Which of the following is true?

- A. neither statement is correct
- B. only statement I is correct
- C. only statement II is correct
- D. both statements are correct

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| D   | 1.1     | С     | 0.74     | 0.37  | NC         | G7      | HSN 068 |

I is correct since the line passes through vertex B and is perpendicular to the opposite side.

PSfrag replacement


II is correct since the triangle is isosceles. Option D

replacements

O x y hsn.uk.net

12. Triangle ABC with vertices A(-4,1), B(4,3) and C(1,5) is shown below.

PSfrag replacements



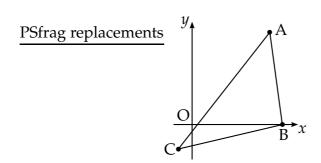
Point M(0,2) is the midpoint of AB. What is the equation of the median through C?

A. 
$$3x - y + 2 = 0$$

B. 
$$x - 4y + 8 = 0$$

C. 
$$4x + y - 2 = 0$$

D. 
$$3x - y - 1 = 0$$


| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| Α   | 1.1     | С     | 0.78     | 0.38  | CN         | G7      | HSN 138 |

$$m_{MC} = \frac{5-2}{1-0} = 3.$$

 $m_{MC} = \frac{5-2}{1-0} = 3.$ So the equation is y-2=3(x-0)i.e. 3x-y+2=0. Option A

i.e. 
$$3x - y + 2 = 0$$

13. Triangle ABC with vertices A(6,7), B(7,0) and C(-1,-2) is shown below.



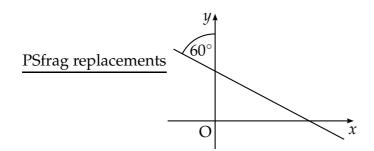
The line through C and B has gradient  $\frac{1}{4}$ . Find the equation of the altitude through A.

A. 
$$4x + y - 11 = 0$$

B. 
$$x - 4y + 22 = 0$$

C. 
$$4x + y - 31 = 0$$

D. 
$$8x - 3y - 27 = 0$$


| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| С   | 1.1     | С     | 0.55     | 0.67  | CN         | G7, G5  | HSN 128 |

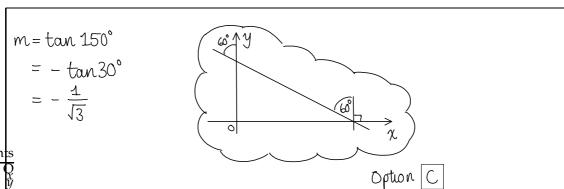
$$m_{alt.} = -4$$
 since  $m_{BC} \times m_{alt} = -1$ 
Using  $m_{alt.}$  and  $A(6,7)$ :  $y-7=-4(x-6)$ 

$$y-7=-4x+24$$

$$4x+y-31=0$$
. Option C

14. What is the gradient of the straight line shown in the diagram?




A. 
$$-\sqrt{3}$$

B. 
$$-\frac{1}{2}$$

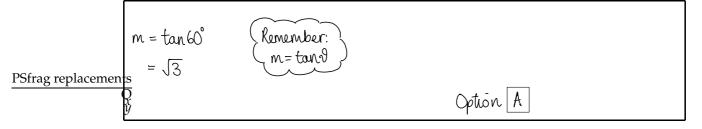
C. 
$$-\frac{1}{\sqrt{3}}$$

D. 
$$\frac{1}{\sqrt{3}}$$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source  |
|-----|---------|-------|----------|-------|------------|---------|---------|
| С   | 1.2     | С     | 0.49     | 0.33  | NC         | G2, T3  | HSN 147 |



PSfrag replacements


replacements

15. A line makes an angle of  $60^{\circ}$  with the positive direction of the *x*-axis.

What is the gradient of the line?

- A.  $\sqrt{3}$
- B.  $\frac{\sqrt{3}}{2}$
- C.  $\frac{1}{\sqrt{3}}$
- D.  $\frac{1}{2}$

| Key | Outcome | Grade | Facility | Disc. | Calculator | Content | Source |
|-----|---------|-------|----------|-------|------------|---------|--------|
| Α   | 1.2     | С     | 0.53     | 0.15  | NC         | G2, T3  | HSN 03 |



[END OF QUESTIONS]