Recurrence Relations Objective 1

1. A sequence is defined by the recurrence relation $u_{n+1}=-3 u_{n}+7$ with $u_{0}=2$. What is the value of u_{2} ?
A. -1
B. 1
C. 4
D. 10

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
C	1.4	C	0.85	0.38	NC	A11	HSN 157

$$
\begin{aligned}
& u_{1}=-3 \times 2+7=-6+7=1 \\
& u_{2}=-3 \times 1+7=-3+7=4 . \quad \text { Option C }
\end{aligned}
$$

2. A sequence is defined by the recurrence relation $u_{n+1}=\frac{1}{4} u_{n}+8$ with $u_{0}=32$. Evaluate u_{2}.
A. 10
B. 12
C. 16
D. 32

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	1.4	C	0.83	0.35	NC	A11	HSN 137

$$
\begin{aligned}
& u_{1}=\frac{1}{4} u_{0}+8=\frac{1}{4} \times 32+8=8+8=16 . \\
& u_{2}=\frac{1}{4} u_{1}+8=\frac{1}{4} \times 16+8=4+8=12 . \quad \text { Option B }
\end{aligned}
$$

3. A sequence is defined by the recurrence relation $u_{n+1}=a u_{n}+b$, where a and b are constants.

Given that $u_{0}=4$ and $u_{1}=8$, find an expression for a in terms of b.
A. $\quad a=\frac{1}{2}-\frac{1}{8} b$
B. $a=2-\frac{1}{4} b$
C. $a=\frac{1}{2}+\frac{1}{8} b$
D. $a=2+\frac{1}{4} b$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	1.4	C	0.62	0.5	CN	A10, A14	HSN 060

$$
\begin{aligned}
& u_{0}=4 \\
& \begin{aligned}
u_{1}=a & \times 4+b=4 a+b=8 \\
\text { So } 4 a & =8-b \\
a & =\frac{8}{4}-\frac{b}{4} \\
& =2-\frac{1}{4} b
\end{aligned}
\end{aligned}
$$

4. Two sequences are defined by

$$
\begin{aligned}
& u_{n+1}=\frac{1}{2} u_{n}+7 \text { and } \\
& v_{n+1}=-v_{n}+2,
\end{aligned}
$$

with $u_{0}=-4$ and $v_{0}=10$.
Here are two statements about the sequences:
I. u_{n} tends to a limit as $n \rightarrow \infty$.
II. v_{n} tends to a limit as $n \rightarrow \infty$.

Which of the following is true?
A. neither statement is correct
B. only statement I is correct
C. only statement II is correct
D. both statements are correct

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	1.4	C	0.45	0.55	CN	A12	HSN 166

Since $-1<\frac{1}{2}<1$, u_{n} tends to a limit as $n \rightarrow \infty$.
$v_{0}=10, v_{1}=-8, v_{2}=10, \ldots$ so v_{n} alternates between
two numbers - there is no limit. Note:
(Just because - $1<a<1$
is not satisfied, we
(cannot conclude that)
there is no limit.
e.g. $u_{n+1}=-u_{n}+2$
$u_{0}=1$
Option B
5. A sequence is defined by the recurrence relation $u_{n+1}=\frac{2}{5} u_{n}+6$ with $u_{0}=-10$. What is the limit of the sequence?
A. 10
B. $\frac{2}{5}$
C. $-\frac{2}{25}$
D. -30

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	1.4	C	0.94	0.14	NC	A13	HSN 088

A limit exists since $-1<\frac{2}{5}<1$
Method $1 \quad l=\frac{b}{1-a}$ where $a=\frac{2}{5}, b=6$

$$
=\frac{6}{1-\frac{2}{5}}
$$

$$
=\frac{6}{3 / 5}
$$

$$
=10
$$

Method 2 As $n \rightarrow \infty, u_{n+1}=u_{n}=l$

$$
\begin{aligned}
l & =\frac{2}{5} l+6 \\
\frac{3}{5} l & =6 \\
l & =10 .
\end{aligned}
$$

Option A
6. A sequence is defined by the recurrence relation $u_{n+1}=a u_{n}+\frac{3}{2}$, with $u_{0}=5$.

Given that this sequence has limit 1 , what is the value of a ?
A. $-\frac{1}{2}$
B. $-\frac{1}{3}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	1.4	C	0.48	0.43	NC	A13, A14	HSN 141

Method $1 \quad l=\frac{b}{1-a}=\frac{3 / 2}{1-a}=1$.
So $1-a=\frac{3}{2}$

$$
\begin{aligned}
a & =1-\frac{3}{2} \\
& =-\frac{1}{2} .
\end{aligned}
$$

Method 2 As $n \rightarrow \infty, u_{n+1} \rightarrow u_{n} \rightarrow 1$.

$$
\text { So } \quad \begin{aligned}
1 & =a \times 1+\frac{3}{2} \\
a & =1-\frac{3}{2}
\end{aligned}
$$

$$
=-\frac{1}{2} . \quad \text { Option } A
$$

