2

Recurrence Relations Objective 1

- 1. A sequence is defined by the recurrence relation $u_{n+1} = -3u_n + 7$ with $u_0 = 2$. What is the value of u_2 ?
 - A. -1
 - В. 1
 - C. 4
 - D. 10

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
С	1.4	С	0.85	0.38	NC	A11	HSN 157

Option C

- 2. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 8$ with $u_0 = 32$. Evaluate u_2 .
 - A. 10
 - B. 12
 - C. 16
 - D. 32

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
В	1.4	С	0.83	0.35	NC	A11	HSN 137

$$u_{1} = \frac{1}{4}u_{0} + 8 = \frac{1}{4}x32 + 8 = 8 + 8 = 16.$$
PSfrag replacements
$$u_{1} = \frac{1}{4}u_{0} + 8 = \frac{1}{4}x32 + 8 = 8 + 8 = 16.$$
Option B

$$u_2 = \frac{1}{4}u_1 + 8 = \frac{1}{4} \times 16 + 8 = 4 + 8 = 12$$

3. A sequence is defined by the recurrence relation $u_{n+1} = au_n + b$, where a and bare constants.

Given that $u_0 = 4$ and $u_1 = 8$, find an expression for a in terms of b.

A.
$$a = \frac{1}{2} - \frac{1}{8}b$$

B.
$$a = 2 - \frac{1}{4}b$$

C.
$$a = \frac{1}{2} + \frac{1}{8}b$$

D.
$$a = 2 + \frac{1}{4}b$$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
В	1.4	С	0.62	0.5	CN	A10, A14	HSN 060

$$u_{1} = a \times 4 + b = 4a + b = 8$$

$$So \quad 4a = 8 - b$$

$$a = \frac{8}{4} - \frac{b}{4}$$

$$= 2 - \frac{1}{4}b$$

So
$$4a = 8 - b$$

$$a = \frac{8}{4} - \frac{6}{4}$$

$$= 2 - \frac{1}{4} k$$

PSfrag replacements

PStrag replacements

4. Two sequences are defined by

$$u_{n+1} = \frac{1}{2}u_n + 7$$
 and $v_{n+1} = -v_n + 2$,

with $u_0 = -4$ and $v_0 = 10$.

Here are two statements about the sequences:

- I. u_n tends to a limit as $n \to \infty$.
- II. v_n tends to a limit as $n \to \infty$.

Which of the following is true?

- A. neither statement is correct
- B. only statement I is correct
- C. only statement II is correct
- D. both statements are correct

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
В	1.4	С	0.45	0.55	CN	A12	HSN 166

Since $-1<\frac{1}{2}<1$, u_n tends to a limit as $n\to\infty$. $v_0=10$, $v_1=-8$, $v_2=10$,... So v_n alternates between two numbers – there is no limit. (Note: Tust because $-1<\alpha<1$) is not satisfied, we cannot conclude that there is no limit. e.g. $u_{n+1}=-u_n+2$ $v_0=1$.

PSfrag replacements

Option B

- 5. A sequence is defined by the recurrence relation $u_{n+1} = \frac{2}{5}u_n + 6$ with $u_0 = -10$. What is the limit of the sequence?
 - A. 10
 - B.
 - C. $-\frac{2}{25}$
 - D. -30

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	1.4	C	0.94	0.14	NC	A13	HSN 088

A limit exists since
$$-1\langle \frac{2}{5}\langle 1 \rangle$$

Method 1 $l = \frac{b}{1-a}$ where $a = \frac{2}{5}$, $b = 6$

$$= \frac{6}{1-\frac{2}{5}}$$

$$= \frac{6}{3/5}$$

Method 2 As $n \rightarrow \infty$, $u_{n+1} = u_n = l$.

$$l = \frac{2}{5}l + 6$$

PSfrag replacements

$$\frac{3}{5}l = 6$$

$$l = 10.$$

Option A

6. A sequence is defined by the recurrence relation $u_{n+1} = au_n + \frac{3}{2}$, with $u_0 = 5$. Given that this sequence has limit 1, what is the value of a?

- A. $-\frac{1}{2}$
- B. $-\frac{1}{3}$
- C. $\frac{1}{3}$
- D. $\frac{1}{2}$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
Α	1.4	С	0.48	0.43	NC	A13, A14	HSN 141

Method 1
$$l = \frac{b}{1-a} = \frac{3/2}{1-a} = 1.$$
So
$$1-a = \frac{3}{2}$$

$$a = 1-\frac{3}{2}$$

$$= -\frac{1}{2}.$$
Method 2 As $n \to \infty$, $u_{n+1} \to u_n \to 1$.

So $1 = \alpha \times 1 + \frac{3}{2}$

 $\Delta = 1 - \frac{1}{2}$

Option A

[END OF QUESTIONS]

PSfrag replacements