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FORMULAE  LIST    
 
 
Circle: 
 
The equation    represents a circle centre 02222 =++++ cfygxyx ( , )− −g f  and radius cfg −+ 22 . 
 
The equation      represents a circle centre  ( a , b )  and radius  r. ( ) ( )x a y b r− + − =2 2 2

 
 
 
 
Scalar Product: a . b ,cosθba= where θ  is the angle between a and b 
 
   or 

   a . b where  a and  b  332211 bababa ++=
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Trigonometric formulae: 
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A
A
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BABABA
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2

2

22

sin21
1cos2

sincos2cos
cossin22sin
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−=
−=

−=
=
=±

±=±
m

 

 
   
Table of standard derivatives: 

        axsin  

axaax
axa

xfxf

sincos
cos

)()(

−

′

 
 
 
Table of standard integrals: 

                  

f x f x dx

ax
a

ax C

ax
a

ax C

( ) ( )

sin cos

cos sin

∫

− +

+

1

1
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 All questions should be attempted
 
 
1. The diagram shows an arc AB of the circle with  

its centre at C. The coordinates of A and B  
are and )7,4( − )1,8( −−  respectively. 
 
(a) Find the equation of the perpendicular  

bisector of the chord AB.             4 
 
(b) Hence establish the coordinates of C, given  

that C is vertically above A.             2 
 
(c) Write down the equation of the circle, centre C, passing  

through the points A and B.             2 

O 

y 

x 

A 

B 

C 

 
 
 
 
2. For what value(s) of p does the equation   have equal roots?      4 013)14( 2 =+−+ pxxp
 
 
 
 
3. The diagram below shows part of the the graph of   y g x= ( )   . 
 The function has stationary points at ( )3,0 −  and as shown.  )0,2(
 
 
 
      

O 2

-3 

x 

y 

 
 
 
 
 
 
 
 
 

Sketch the graph of the related function 3)( +−= xgy .          3  
 
 
 

4. A function is defined as    for  θθθ 2sin32cos)( +=f
2

0 πθ << .    

 
 (a) Show that    θθ 2sin)( =′f .             4 
 

 (b) Hence calculate the rate of change of the function at 
12

πθ = .        1 
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5. The daigram shows the graph of , for  xy 3sin= 3

20 π≤≤ x , and the line with 
 equation  2

1=y . 
 
 

2
1

2
1=y

3
2π

3
πO 

y 

x 

P 

 
 
 
 
 
 
 
 
 
 

Establish the coordinates of the point P.            3  
 
 
 

6. A curve has as its derivative   38 −= x
dx
dy . 

 
 

c

Given that the point  lies on this curve, express  y  in terms of  x.        4 )3,1( −
 
 
 
7. A sequence of numbers is defined by the recurrence relation   U kUn n+ = +1  , 
 where  k  and  c  are constants. 
 
 (a) Given that  65,70 32 == UU and  5624 ⋅=U   ,  find  algebraically , the 
  values of  k  and  c  .              3 
 
 (b) Hence find the limit of this sequence.            2
          
 (c) Express the difference between the fifth term and the limit of this sequence as 
  a percentage of the limit, correct to the nearest percent.         2   
 
 
 
8. A function is given as      and is defined on the xxxxf 2793)( 23 +−=
 set of real numbers. 
 
 (a) Show that the derivative of this function can be expressed in 
  the form  f ′   and write down the values of a, b and c.      4 [ cbxax +−= 2)()( ]
 
 (b) Explain why this function has no stationary points and is in fact 
  increasing for  all  values of  x .            2 
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9. The functions      and   9)( 2 −= xxf xxh 23)( +=    are defined on the set of 
 real numbers. 
 
 (a) Evaluate    .              1 ( )(3fh )
 
 (b) Find an expression , in its simplest form,  for ( ))(xhf  .         2 
 
 (c) For what value(s) of x does ( ))(xhf  )(xf=  ?          2  
 
 
 
 
10. Three vertices of the quadrilateral  PQRS are  P( 4 , -3 , -2 )  Q( 10 , 1 , 1 ) and R( 7 , 4 , 3 ). 
 
 

z  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Given that  QR  =  PS  , establish the coordinates of S.         2 

y 

x S 

R(7 , 4 , 3) 

P(4 , -3 , -2) 

O 

Q(10 , 1 , 1) 

 
 (b) Hence show that angle PSR is a right angle.           3 
 
 
 
 
11. Given that   log 2log)15( 22 =−− xx   ,  find the value of  x  .         3 
 
 
 
 
 [ END OF QUESTION PAPER ] 
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Higher Mathematics  Practice Exam G  Marking Scheme   -   Paper 1 
 
 
 
1. (a)  ans:      4 marks        xy 2= •
 

  For mid-point of AB 1•
  For gradient of AB 2•
  For gradient of perpendicular 3•
 4  For equation of bisector •
 

 (b)  ans:   C(4,8)   2 marks 
 

        For knowing to use x1• A  
 2  For sub. in equation to answer •
 

 (c)  ans:    2 marks 225)8()4( 22 =−+− yx
 

        For finding radius 1•
 2  For sub. in standard equ. to answer •
 

2. ans:    2,9
2 =−= pp   4 marks 

 

1•  For discr. = 0  (stated or implied)  
2•  For selecting a, b and c 

  Substituting and simplifying 3•
 4  Factorising to answers •
 

 

3. ans:    diagram   3 marks 
 

1•  For reflection in y-axis  
2•  For translating ….  3 up 

  For annotating final sketch 3•
 
4. (a)  ans:   proof   4 marks        
 

 1  For differentiating first term •
 2  For differentiating second term •
  common factor (isolating double angle) 3•
  for double angle + simplifying 4•
 

 (b)  ans:   
2

1     1 marks        
 

 1  answer •
 
 
 
 

5. ans:    ),( 2
1

18
5πP    3 marks 

 

1•  For equating   
2•  Angles for sin3x (choosing quad.) 

  Answer 3•
 
6. ans:      4 marks 434 2 −−= xxy
 

1•  For setting up integral  
2•  For integrating 

  For substituting 3•
 4  Correct answer •
 
 
 

1
2• 2

1−
3•
4• xyxy 2)2(24 =⇒+=+

1•
2• )8,4(8)4(2 Cy ∴==

1•
2•

222 )() rbyax =−+−

1• 042 =− acb
2• 1,3,14 =−=+= cpbp
3• 0)1).14(4()3 2 =+−− pp

04169 2 =−− pp
4• 20)2)(29 9

2 orppp −=⇒=−+

1• ...........2sin2 θ

2 θθ cossin6

3• )cossin2(3 θθ+
4• θθθ 2sin)2(sin3sin2 =+

1• 2
1

61212 sin)2sin()( ==×=′ πππf

1• 2
13sin =x

• 6
5

63 ππ orx =∴
3• 18

5π=x ),( 2
1

18
5πP

1• ∫ −= dxxy 38  

2• cxxcxxy +−⇒+−= 343
2

8 2
2

3• c+−=− )1(3)1(43 2

4• 4−=c

(a)    M(-2,-4) 
       mAB =      
    m1 × m2 = -1  ,  mbis. = 2  
    
       
(b)    xC = xA = 4 
       
     
 
(c)    CA is vertical = radius = 15 units 
       C(4,8)  ,  r = 15  in equ…….        
          (             
 

   For equal roots    
    a  
         (  
          ⇒  
    (
 
 

  
   
       
 

       
(a)    −  
 
 
 

 •    …….. +         
 
 

     ……...   
     −     

 
 
 
 
 

(b)             
      
 
           
 2       quad ½   
       …….   
 

    

         

        
           to answer    

O 

(-2,3) 

x 

y 

Illustration(s) for awarding each mark Give 1 mark for each   
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7. (a)  ans:   30,2

1 == ck   3 marks 
 

 1   Setting up a system of equ.  •
 2  Finding k •
  Finding c 3•
 

(b)  ans:   60    2 marks 
 

 1   Knowing how to find limit  •
 2  Calculating limit •
 

 (c)  ans:   2%    2 marks 
 

 1  For calculating U• 5 
 2  For percentage calculation •
 
 
 
 
 

8. (a)  ans:    4 marks 2,1,9 === cba
 

 1  For differentiating •
 2  For common factor •
  For the square  3• 2)1( −x
 4  For c = 2  (no need to list a,b and c) •
 

(b)  ans:   explanation   2 marks 
 

 1   For statement on solving to zero  •
 2  Derivative always +ve, always increasing •
 
 

9. (a)  ans:   3    1 mark 
 

 1  answer •
 

(b)  ans:    2 marks 2412))(( xxxhf +=
 

 1   For substitition  •
 2  Simplifying to answer •
 

 (c)  ans:  1,3 −=−= xx    2 marks 
 

 1   For equating  •
 2  For solving to answers •
    
10. (a)  ans:   S(1,0,0)   2 marks 

 1   For finding displacement   •
→

QR
 2  For establishing coordinates of S •
 

 (b)  ans:   proof   3 marks 
 

 1   For knowing , for R.A. • 0. =
→→

SPSR
             (stated or implied) 
 2  For both displacements •
  For scalar product calculation to zero 3•
 
 
 
 
 

 
11.      

 ans:      3 marks 1=x
 

 1   For combining logs  •
 2  For removing logs •
  For finding x 3• Total  53 ma

Illustration(s) for awarding each mark Give 1 mark for each   

 Pegasys 2005 
1• ckckU +=⇒+= 706523

ckckU +=⋅⇒+= 6556234

2• 2
152 =⇒⋅= kk

3• 30=

1•
a

bL
−

=
1

2• 60)1(/30 2
1 =−=L

1• 256130)562(2
1

5 ⋅=+⋅=

2• %2100
60

251
≈×

⋅

1• 27189)( 2 +−=′ xxxf
2• [ ]322 +− xx
3• [ ].........)1( 2−x
4• [ ] [ ]2)1(931.......... 2 +−=+− x

)1−=b
1• 02)1 2 =+−x
2• 2)1 2 +−x

1• 3)0(,0)3( == hf

1• 9)23())(( 2 −+= xxhf
2• 2412))(( xxxhf +=

1• 94 22 −=+ xxx

2•
0)1)(3(3
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1
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3
4
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−
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−
−=

0
0
1

2
3
3

2
3

4
s

1 0. =
→→

SPSR

2 ...........
2
3

3

3
4
6

. =














−
−














=

→→

SPSR

3 angledr −∴=−−= ,061218

1• 215
2 =






 −

x
x

2•
x

x 152 −
=

3• 1154 =⇒−= xxx

(a)    U
         U  
    5   
     c  

(b)       ,  or equivalent 

      
          

(c)           U   

     

 

(a)    
   9    
   9  

  9    
    (no marks off if  

(b)   ( has no solution 
    ( always +ve , always incr. 

 
 
 
 

(a)    (or equiv.) 
 
(b)    
    
 

(c)   12  

    3     … x = -3 or -1 

 
 
 
 

(a)    QR  

    ,  or equiv. 

(b)       •   For right-angle   

           •    

           •     

 
 
 
 
 

  log    

   2    (or equivalent)  

      
rks
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FORMULAE  LIST    
 
 
Circle: 
 
The equation    represents a circle centre 02222 =++++ cfygxyx ( , )− −g f  and radius cfg −+ 22 . 
 
The equation      represents a circle centre  ( a , b )  and radius  r. ( ) ( )x a y b r− + − =2 2 2

 
 
 
Scalar Product: a . b ,cosθba= where θ  is the angle between a and b 
 
   or 

   a . b where  a and  b  332211 bababa ++=
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Trigonometric formulae: 
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A
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2

2
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sin21
1cos2

sincos2cos
cossin22sin

sinsincoscoscos
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−=
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−=
=
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±=±
m

 

 
Table of standard derivatives:   

        axsin  

axaax
axa

xfxf

sincos
cos

)()(

−

′

 
 
 
Table of standard integrals: 

                  

f x f x dx

ax
a

ax C

ax
a

ax C

( ) ( )

sin cos

cos sin

∫

− +

+

1

1
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 All questions should be attempted
 
 
 
1. Triangle PQR has vertices P , Q  and  R  as shown. ),1( k− )10,3( )2,11(
 

Q )10,3(  

),1( k−

)2,11

y 

x 

R (  

P  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(a) Given that the gradient of side PQ is 3, find the equation of PQ.        2 
 
 (b) Hence find k, the y-coordinate of vertex P.                      1 
 
 (c) Find the equation of the median from P to QR.          3 
 
 (d) Show that this median is at right-angles to side QR. 
 

What type of triangle is PQR?                3 
 
 
 
 

2. Evaluate  when  )4(f ′
2

2)(
x

xxxf −
= .                       5 

 
 
 
 

3. Two functions are defined as      and   baxxf 2)( 2 −=
3

62)( bxxh −
=  , 

 where a is a constant . 
 
 (a) Given that (f ,  show clearly that )2()2 h= 3

1=a .          3 
 
 (b) If  =b  , show that  6−px 122)( 2

3
1 +−= pxxxf .                                           1 

 
 (c) Hence state the values of p for which 0)( =xf  has no real roots.                              4 
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4. A fishing boat's fish hold is in the shape of 
 the prism shown opposite. 
 

 The length of the hold is 12 metres. 
 
 
 The cross-section of the hold is represented in the  

coordinate diagram below. 
 
All the units are in metres, with the floor of the hold 
represented by the curve [ ]100162

18
1 +−= xxy . 

 

12 m 

 
 

y 

8 

[ ]1001621 +−= xxy
4 

P Q 

b a 

 
 
 
 
 
 
 
 
 
 

O  
 
 
 
 
 (a) Find the values of a and b, the x-coordinates of P and Q. 
 
 (b) Show clearly that the area between the line PQ and the curv

  can be calculated by evaluating the integral:   A 18
1= ∫

b

a
1(

 

 (c) Calculate this area in square metres.    
   
 (d) Hence calculate the volume of the hold, in cubic metres, by
  the total cross-sectional area of the hold.   
 
 
 
 
 
5. Two vectors are defined as  V1 = √2i + 3j - √5k  and  V2 = √3i + √6
 

Calculate the angle between these two vectors to the nearest degree 
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18

x 

            3 

e [ ]100162
18
1 +−= xxy  

−− dxxx )286 2 .      2 

        4 

 first establishing 
        2 

j . 

.        5 



 
6. Certain radioisotopes are used as tracers, to track down diseased tissue within the body, and  

then be absorbed, to act as a long-term radio-therapy treatment. Their passage through the body   
and mass is ascertained by means of a Geiger-Müller counter. 

 

 During trials of a particular radioisotope the following information was obtained. 
 
 

• 
• 

•  

 
 
 
 
 
 
 

 (a) An intial dose of 
 

  Would the mass r
the Geiger-Mülle
 

Your answer mu
 
 

 (b) After the initial 
 

Comment on the 
 

Your answer mu
 
 
 
 

7. The diagram shows a circ
 

 Two common tangents h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Find the centre an 

 
 (b) Hence find the eq
 
 (c) Given now that th
  of S and P.  
   

 Pegasys 2005 
the isotope loses 3% of its mass every hour 
the maximum recommended mass in the 
bloodstream is 165mgs 
100mgs is the smallest mass detectable by the
Geiger-Müller counter 
150mgs of the isotope is injected into a patient. 
emaining after 12 hours still be detectable by  
r counter?              3 

st be accompanied by appropriate working.   

dose, top-up injections of 50mgs are given every 12 hours. 
long-term suitabilty of this plan.           4 

st be accompanied by appropriate working. 

le, centre C, with equation . 054822 =−−−+ yxyx

ave been drawn from the point P to the points S and T ( on the circle. )6,7

P 

)6,7

054822 =−−−+ yxyx

O 

y 

x 
C S 

T (  

d radius of the circle.                      2 

uation of the tangent PT.           3 

e tangent PS is parallel to the y-axis, determine the coordinates 
                        3



 
 
 
8. Solve algebraically the equation 
 
   ,cos71sin3 oo xx −=  where  0 180<≤ x .                    7 
 
 
 
 
9. The curve below has as its equation , where k is a constant. 46 23 ++−= kxxxy
 A )(  is a stationary point. 8,1
  
 
 

O 

y 

x 

B 

 A ) 46 23 ++−= kxxxy8,1(

 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Using the x-coordinate of A, to help you, find the value of k.         4 
 
 (b) Hence find the coordinates of the other stationary point at B.        3 
 
 
 
 
 
 

[ END OF QUESTION PAPER ]  
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Higher Mathematics  Practice Exam G  Marking Scheme   -   Paper 2 
 
 
 
1. (a)  ans:     2 marks        13 += xy •
 

 1  For using Q •
 2  For answer •
   

 
 (b)  ans:      1 mark  2−=k •
 

 1  For subst. to answer •
  
 

 (c)  ans:     3 marks 1−= xy
 
  For mid-point of QR  1•

2•  For calculating gradient 
  answer 3•
 

 (d)  ans:  proof  ,  isosceles  3 marks 
 

  For knowing m1• 1.m2 = -1  
2•  For calculation to prove 

   For isosceles (no explanation required) 3•
 
 

2.       ans:   
32
1)4( =′f    5 marks 

 

 1•  For preparing to differentiate  
2•  Differentiating first term 

  Differentiating second term 3•
 4  Subst. x = 4 in derivative •
  Calculating answer 5•
 
 
 
 
 

3. (a)  ans:  proof     3 marks       
 

 1  For sub 2 in f and h  •
2•  For equating 

  For solving to required answer 3•
   

 (b)  ans:   proof   1 mark 
 

 1  For sub. for a and b and adjusting  •
 to required answer 
  

 (c)  ans:      4 marks  22 <<− p
 

 1  For discr. statement (or implied) •
 2  For values of a, b and c •
  For subst. and factorising 3•

4•  For final statement (worded ans. o.k.) 
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1
2• )3(310 −=− xy

1 ky =−=+−= 21)1(3  

1•

2• 1
)1(7
)2(6

=
−−
−−

=med

3• )7(16 −=− xy

1• 1−=× PmQR mm

2• 111 −=×
3•

1•
2
3

2
1

2

)2()(
1

2

−−

−

−=

−=

xx

xxxxf

2• ..........)( 2−−=′ xxf

3• 2
5

3..........)( −=′ xxf

4•
2
5

4

3
4
1)( 2 +−=′ xf

5•
32
1

32
3

32
2)4( =+−=′f

1•
3
64)2(,24)2( bhbaf −

=−=

2•
3
642 bba −

=−

3•
3
1........64612

64)24(3
=−=−

−=−
abba

bba

1• )6(2)( 2
3
1 −−= pxxxf

122)( 2
3
1 +−= pxxxf

1• 042 <− ac
2• 12,2,3

1 =−== cpb

3•
0)2)(2(4
0)12..4()2 3

12

<+−
<−−

pp
p

4•

(a)    Q(3,10)  ,  m = 3 
                
   
 
(b)    
      
 
 
(c)    MQR(7,6)   

   m   

     
 
(d)   If perp…  
        (stated or implied) 
          −         
    isosceles 
 

    

     

      

      

      

 

(a)     

        4  

     
   

(b)             
             

  
(c)    for no real roots  b   
    a   

    (   

   p has to lie between -2 and 2  
 
 

Illustration(s) for awarding each mark Give 1 mark for each   



  
 

                             
 
4. (a)  ans:    3 marks        14,2 == ba • (18

1 +−=
 

 1  For sub. 4 for y in order to solve  •
2•  manipulating equation to zero 

  factorising and answers 3•
   

 
 (b)  ans:   proof   2 marks  
 

 1  Strategy of line minus curve  •
2•  Constant out + tidy to required answer 

  
 

 (c)  ans:  16  m2   4 marks 
 
  For integrating (all 3 terms)  1•

2•  For substituting 
  For simplifying each part 3•
 4  For calculating answer •
  
 

 (d)  ans:   m768 3    2 marks 
 

  For total surface area  1•
2•  For volume 

   
5.    ans:   35o    5 marks 
 
 1  consruct appropriate vectors •
 2  strategy of  • .......cos =θ  
  calculate scalar product 3•
 4  process denominator (magnitudes) •
  calculate angle  5•
  (rounding only a guide) 
 
 
 
   
 
6. (a)  ans:   Yes , 104  3 marks 10008 >⋅
 
 1  For  taking  • 970 ⋅=a  
 2  For calculation •
  For consistent answer 3•
   
 (b)  ans:  Plan o.k., over the long-term 
                   between 113 mgs 4 marks 31633 ⋅⋅ and
 

 1  For attempting lines of working •
 2  For finding the limit •
  For being aware of the lower limit as 3•
                        well as the upper limit 
 4  Consistent comment on findings •

1 )100162 xx
2• 028162 =+− xx
3• 14,20)14)(2 ==⇒=−− xxxx

1• dxxxA ∫ −−−= )10016(4 2
18
1

2•
dxxxA

dxxxA

)2816(

)10016(72
214

218
1

2
18
1

−−=

+−−=

∫
∫

1• [ ]14

23
2

18
1 288 3 xxA x −−=

2•

[ ]))2(28)2(8())14(28)14(8( 3
22

3
142

18
1 33

−−−−−=A

3• [ ]912120018
1 −=A

4• [ ] 1628818
1 ==A

1• 264)124(16 mA =×+=
2• 37681264 m=×=

1•
















=
















−
=

0
6
3

,
5

3
2

21 V

2• .......=θ

3• 640636. 21 =++=V
4• 1291621 =×=× VV

5• oo 35335
12

64
≈⋅=∴= θθ

1• 970 ⋅=
2• 08104150)970( 12

12 ⋅=×⋅=
3•

1• 51 U→

2• 31163
)970(1

50
12 ⋅=

⋅−
=L

3• 311135031 ⋅=−⋅
•

 (a)    4    
     

     (  
 
(b)     

    

      
(c)      

 ………. 

  

      
      
  
(d)     
           V        
     

   V   

    cos  (formula may only 
          appear when numbers are subst.)
    V   

     

   cos
  

(a)   a  
   U  
   Yes  ,  since U12 > 100 
 

(b)   U  below ……… 
       154⋅08, 156⋅91, 158⋅87, 160⋅23, 161⋅17  

     

    lower limit = 163  
 4   Over the long-term the amount 
present 
                   would always be between 113⋅31 and 
                   163⋅31 which is ideal. 
 
      .       

Illustration(s) for awarding each mark Give 1 mark for each   
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7. (a)  ans:   C(4,2)  ,  r = 5  2 marks 
 

 1  For centre •
 2  For radius •
   
  

 (b)  ans:   (or equiv.) 3 marks 4534 =+ xy
 

 1  For gradient of radius •
 2  For gradient of tangent •
  For sub. using m3• tan & T(7,6) 
   
 (c)  ans:  S(-1,2)  ,  P(-1,12)  3 marks 
 

 1  For x• c - 5 = xs = -1 , then coord. of S   
 2  For knowing to sub. x = -1 into equat. •
  For coordinates of P 3•
 
 
8.      ans:   90⋅0o      7 marks 

 
 1  For re-arranging and realising  … = 1 •
 2  For expansion & equating coefficients •
  Tan ratio  3•
 4  For • α  
  For k 5•
  For solving to one-third 6•
  For angle 7•
  
     
 
9. (a)  ans:      4 marks 9=k
 
 1  For knowing that at A the deriv. = 0  •

2•  For differentiating 
  For solving deriv = 0 and making x = 1 3•
 4  Calculating k •
 
 (b)  ans:   B(3,4)   3 marks 
 
 1  Solving deriv. to zero when k = 9  •

2•  Finding x-coordinate of B 
3•  Sub. to find y-coordinate of B 

  

   
   
 
 
 
 
 

1•

2• 525)5(24 22 ==−−+=

1•
3
4

47
26

=
−
−

=CT

2• 4
3

tan −=
3• )7(6 4

3 −−=− xy

1• )2,1(15 −∴−=− S
•

4534 =+ xy
45)1(3 =−+y

3• )12,1(12 −∴= Py

1cos8 =+ xx
2• αα sinsincoscos xkxk +

1sin,8cos == αα k

3•
8

1tan =α

4• o519 ⋅=α
5• 39 ==
6•

3
1)519 =⋅−x

7• oxx 090570519 ⋅=∴⋅=⋅−

1• Aat
dx
dy 0=∴

2• kxx
dx
dy

+−= 123 2

3• 0)1(12)1( 2 =+− k
• 9=

1• 09122 =+− xx
2• 30)3)(1( =⇒=−− xxx
3• 44)3(9)3(63 23 =++−=y

 

(a)   C(4,2) 
   r   
  

(b)    m  

    m  
       
      
(c)    4 … same y as C
 2   x-coordinate of P is same as S. Also 
                    on line . 
        4   
      

 
 1•   sin   

   =  
                     k   

        

      
     k   
    cos(   
      
  
 

(a)    A is a stat. point  

     

    3   
 4    k  
 
(b)    solve  3    

  3  for B 
    

 
 
 
 
 
 
 
 

Total  67 marks 

 

Illustration(s) for awarding each mark Give 1 mark for each   

 Pegasys 2005 


