Higher Mathematics - Practice Examination F

 Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, however, there are some differences in the marks allocated. Calculators may only be used in Paper 2.
MATHEMATICS Higher Grade - Paper I (Non~calculator)

Time allowed - 1 hour 10 minutes

1. Calculators may not be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

FORMULAE LIST

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{ }\left(g^{2}+f^{2}-c\right)$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cos 2 A
\end{aligned}=\cos ^{2} A-\sin ^{2} A \quad \begin{aligned}
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cc}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{cc}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. Given that $x=-2$ and $x=1$ are two roots of the equation $x^{3}+p x^{2}-6 x+q=0$, establish the values of p and q and hence find the third root of the equation.
2. A sequence is defined by the recurrence relation $U_{n+1}=0 \cdot 6 U_{n}+8$.
(a) Explain why this sequence has a limit as $n \rightarrow \infty$.
(b) Find the limit of this sequence.
(c) Given that $L-U_{1}=3$, where L is the limit of this sequence, establish the value of U_{0}, the intitial value.
3. A function is defined as $g(\theta)=2 \cos ^{2} \theta-2 \cos 2 \theta$.

Show that $g^{\prime}(\theta)$ can be written in the form

$$
\begin{equation*}
g^{\prime}(\theta)=2 \sin 2 \theta \tag{5}
\end{equation*}
$$

4. The line with equation $x+3 y=12$ meets the x and the y axes at the points A and B respectively.

Find the equation of the perpendicular bisector of AB .
5. Two functions f and g are defined on the set of real numbers as follows :

$$
f(x)=8-2 x \quad, \quad g(x)=\frac{1}{2}(x+8)
$$

(a) Evaluate $f(g(2))$.
(b) Find an expression, in its simplest form, for $g(f(x))$.
(c) Hence prove that $f^{-1}(x)=\frac{1}{2}[g(f(x))]$.
6. The circle below, centre C , has as its equation $x^{2}+y^{2}-4 x-10 y+19=0$. $\mathrm{M}(1,3)$ is the mid-point of the chord AB .

(a) Write down the coordinates of C , the centre of the circle.
(b) Show that the equation of the chord AB can be written as $x=7-2 y$.
(c) Hence find algebraically the coordinates of A and B.
(4)
7. Triangle ABC has as its vertices $\mathrm{A}(7,2,5), \mathrm{B}(1,0,-1)$ and $\mathrm{C}(7,-3,8)$ as shown. P is a point on side BC.
(a) Establish the coordinates of P given that $\mathrm{BP}=2 \mathrm{PC}$.
(b) Hence show that AP is perpendicular to BC.

8. A radioactive substance decays according to the formula $M_{t}=M_{o} 20^{-0.007 t}$, where M_{o} is the intitial mass of the substance, M_{t} is the mass remaining after t years.

Calculate, to the nearest year, how long a sample would take to decay to half its original mass.
9. Part of the graph of the curve $y=x\left(x^{2}-5 x+6\right)$ is shown in the diagram.

The tangent to the curve at the point where $x=1$ is also shown.

(a) Find the equation of the tangent to the curve at the point where $x=1$.
(b) Show that this tangent also passes through one of the points where the curve crosses the x-axis.

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: $\mathbf{p = - 3}, \mathbf{q}=\mathbf{8}: \mathbf{x}=\mathbf{4} \quad \mathbf{5}$ marks -1 Setting up synth. division $\bullet 2$ Obtaining first equation -3 Obtaining second equation -4 Solving system for p and q -5 Sub. (say p in quotient) for $3{ }^{\text {rd }}$ root	$\bullet 1$$\bullet$ 1 1 p -6 q -2 $p+q=5$ - $34 p+q=-4$ - $4 \quad p=-3, q=8$ - $5 x^{2}-2 x-8=0 \Rightarrow(x+2)(x-4)=0$ $x=4$ is missing root
2.		(a) $\bullet 1$ Because $-1<a<1$ (or equiv.) (b) $\bullet \quad L=\frac{b}{1-a}$ -2 $L=\frac{8}{1-0 \cdot 6}=\frac{8}{0 \cdot 4}=\frac{80}{4}=20$ (c) $\quad 1 \quad 20-U_{1}=3 \quad \therefore U_{1}=17$ - $217=0 \cdot 6 U_{0}+8$ -3 $9=0 \cdot 6 U_{0} \Rightarrow U_{0}=\frac{9}{0 \cdot 6}=\frac{90}{6}$ $U_{0}=15$
3.	ans: proof -1 For diff. power in first term -2 For diff. $\cos \theta$ in first term -3 For differentiating second term -4 For extracting $2 \sin \theta \cos \theta$ for replace. -5 Simplifying to given answer	- 1 ($4 \cos \theta$).... - $2-\sin \theta$ i.e. $-4 \cos \theta \sin \theta$ - 3 ($-4 \sin 2 \theta$) - $4-2(2 \sin \theta \cos \theta)-(-4 \sin 2 \theta)$ - $5-2 \sin 2 \theta+4 \sin 2 \theta=2 \sin 2 \theta$
4.	ans: $y=3 x-16$ $\mathbf{5}$ marks - 1 For points A \& B - 2 Gradient of AB -3 Gradient of perpendicular -4 For mid-point of AB -5 For equation of perpen. bisector	- $1 \mathrm{~A}(12,0), \mathrm{B}(0,4)$ -2 $m_{A B}=-\frac{1}{3}$ - $3 m_{\text {per. }}=3$ - $4 \mathrm{M}(6,2)$ -5 $y-2=3(x-6)$
5.	(a) ans: $f(g(2))=-2 \quad 1$ mark -1 For answer (b) ans: $g(f(x))=8-x \quad 2$ marks - 1 For substitution - 2 For simplifying	(a) $\bullet 1 f(g(2))=-2$ (b) $\bullet 1 g(8-2 x)=\frac{1}{2}((8-2 x)+8)$ (or equiv.) - $2 g(f(x))=\frac{1}{2}(16-2 x)$ $=8-x$

	Give 1 mark for each -	Illustration(s) for awarding each mark
5.	(c) ans: proof $\quad \mathbf{3}$ marks $\bullet 1$ For knowing how to find inverse $\bullet 2$ For finding inverse $\bullet 3$ For final statement (equating)	- 1 To find $f^{-1}(x) \Rightarrow y=8-2 x$ -2 $2 x=8-y \Rightarrow x=\frac{1}{2}(8-y)$ - $3 f^{-1}(x)=\frac{1}{2}(8-x)=\frac{1}{2}[g(f(x))]$
6.		(a) $\bullet 1 \quad \mathrm{C}(2,5)$ (b) $\bullet 1 \quad M_{c m}=\frac{5-3}{2-1}=2$ -2 $M_{A B}=-\frac{1}{2}$ -3 $y-3=-\frac{1}{2}(x-1)$ $2 y-6=-x+1$ $x=7-2 y$ (c) $\bullet 1(7-2 y)^{2}+y^{2}-4(7-2 y)-10 y+19=0$ - $25 y^{2}-30 y+40=0$ -3 $3(5(y-4)(y-2)-0 \therefore y=4, y=2$ - $4 y=4$ then $x=-1, y=2$ when $x=3$
7.	(a) ans: $\mathbf{P}(\mathbf{5}, \mathbf{- 2 , 5})$ $\bullet \mathbf{1}$ For initial vector algebra $\bullet \bullet$ \bullet marks $\bullet 3$ For simplification (b) answer proof $\bullet 1$ Scalar product statement (or implied) $\bullet 2$ For vectors in component form $\bullet 3$ Scalar product calculation to zero	(a) $\bullet 1 \quad p-\underset{\sim}{b}=2(\underset{\sim}{c}-p)$ - $23 p=2 c+b$ - $3 \mathrm{P}(5,-2,5)$ (b) $\bullet 1$ If perp. then $\overrightarrow{A P} \cdot \overrightarrow{B C}=0$ -2 $\overrightarrow{A P}=\left(\begin{array}{c}-2 \\ -4 \\ 0\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{c}6 \\ -3 \\ 9\end{array}\right)$ - $3-12+12+0=0 \therefore$ perp.
8.	ans: $\mathbf{3 3}$ years 4 marks -1 For solving to 0.5 -2 For taking logs - 3 For releasing the power - 4 calculation to answer	- $120^{-0.007 t}=0 \cdot 5$ - $2 \log 20^{-0.007 t}=\log 0 \cdot 5$ - $3-0 \cdot 007 t \log 20=\log 0 \cdot 5$ - $4-0 \cdot 007 t=\frac{\log 0 \cdot 5}{\log 20} \quad \therefore \quad t=33$
9.	(a) ans: $y=-x+3$ 4 marks - 1 Completing point of tangency - 2 Differentiating to find m - 3 Finding gradient of tangent - 4 Point $+m$ in equation (b) ans: proof 2 marks -1 Finding where tan. cuts x-axis - 2 Showing that point satisfies equation	(a) $\quad 1 \quad y=1(1-5+6)=2 \therefore T(1,2)$ -2 $\frac{d y}{d x}=m=3 x^{2}-10 x+6$ -3 $m=3\left(1^{2}\right)-10(1)+6=-1$ - $4 y-2=-1(x-1)$ various methods (b) $\bullet 1$ When $y=0$ then $x=3$ - 2 Sub $x=3$ in equ. of curve $y=3\left(3^{2}-5(3)+6\right)=3(0)=0$

Higher Mathematics - Practice Examination F

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, however, there are some differences in the marks allocated. Calculators may only be used in this paper.

MATHEMATICS
 Higher Grade - Paper II

Time allowed - 1 hour 30 minutes

Read Carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

FORMULAE LIST

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{ }\left(g^{2}+f^{2}-c\right)$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cc}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{cc}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. Triangle ABC has vertices $\mathrm{A}(5,3), \mathrm{B}(-3,7)$ and $\mathrm{C}(-6,-8)$ as shown. The altitude through B meets AC at P .

(a) Find the equation of side AC and the equation of the altitude BP.
(b) Hence find the coordinates of P .
(c) BP is produced in such a way that $\mathrm{PD}=\frac{1}{2} \mathrm{BP}$. Establish the coordinates of D .
(d) By considering gradients, calculate the size of angle DCP to the nearest degree.
2. Solve algebraically the equation

$$
\begin{equation*}
\sin x^{\circ}-3 \cos 2 x^{\circ}+2=0, \quad 0 \leq x<360 . \tag{5}
\end{equation*}
$$

3. Two functions are defined as $f(x)=(x+2)(x+1)$ and $g(x)=x(x-2)$.
(a) Given that $h(x)=f(g(x))$, show clearly that $h(x)=x^{4}-4 x^{3}+7 x^{2}-6 x+2$.
(b) Hence solve the equation $h(x)=0$ showing that it has, in fact, only one real root.
4. Three wheels are positioned in such a way that their centres are collinear.

When placed on a set of rectangular axes the equations of the two larger circles are
$x^{2}+y^{2}+16 x+12 y=0$ and $(x-16)^{2}+(y-4)^{2}=100$, as shown.

(a) Write down the coordinates of the two centres C_{1} and C_{2}.
(b) Calculate the radii of the two larger circles and the distance between the two centres C_{1} and C_{2}.
(c) Hence establish the centre and radius of the small circle and write down its equation.
5. Two vectors are defined as $F_{1}=2 \underset{\sim}{i}+2 \underset{\sim}{j}-\underset{\sim}{k} \quad$ and $\quad F_{2}=p \underset{\sim}{i}-\sqrt{2} \underset{\sim}{j}+\sqrt{3} \underset{\sim}{k}$.
(a) Given that these two vectors have the same magnitude, find the value of p, where $p>0$.
(b) Hence calculate the angle between these two vectors, giving your answer correct to one decimal place.
6. A function is defined as $f(x)=\sqrt{x}(x-3)$, where only the positive value of \sqrt{x} is taken for each value of $x>0$.
Part of the graph of $y=f(x)$ is shown below.

(a) Find the coordinates of the turning point at P and the root at R .
(b) Hence calculate the shaded area below giving your answer correct to 2 decimal places.

7. Triangle PQR is right-angled at Q .

The hypotenuse is d units long and angle $\mathrm{QPR}=x$ radians.

(a) Explain why $\mathrm{PQ}=d \cos x$ and $\mathrm{QR}=d \sin x$ units long.
(b) Hence show that the perimeter (P) of the triangle can be expressed in the form

$$
\begin{equation*}
P=d+\sqrt{2} d \cos \left(x-\frac{\pi}{4}\right) \tag{7}
\end{equation*}
$$

8. In the diagram below PQRS is a square of side $2 x \mathrm{~cm}$.

A straight line OA , measuring 4 cm , has been drawn in such a way that A lies at the centre of the square and OA is parallel to PS.

(a) Show that $\mathrm{OP}^{2}=2 x^{2}-8 x+16$.
(b) Hence, by completing the square, or otherwise, find x for which the length of OP is at a minimum and state the minimum length of OP.

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	(a) ans: $y=x-2, y=-x+4 \quad 4$ marks -1 For gradient of AC -2 For equation of AC - 3 For finding gradient of altitude - 4 For equation of altitude (b) ans: $\mathrm{P}(3,1)$ -1 Knowing to solve a system - 2 Finding first coordinate - 3 Finding second coord. (c) ans: $\mathrm{D}(6,-2)$ 1 mark -1 Answer (d) ans: 18° 3 marks -1 For knowing and using $\tan \theta=m$ -2 For angle between CD and horoz. - 3 For 45° and subtraction to ans.	(a) $\bullet 1 \quad m_{A C}=\frac{3+8}{5+6}=1$ -2 $y-3=1(x-5)$ -3 $m_{\text {alt }}=-1$ -4 $y-7=-1(x+3)$ (b) $\bullet 1 \quad x-2=-x+4$ -2 $2 x=6 \Rightarrow x=3$ -3 $y=3-2=1$ (c) $\quad 1 \rightarrow 6 \downarrow 6 \therefore \rightarrow 3 \downarrow 3$ from $\mathrm{P}, \mathrm{D}(6,-2)$ (d) $\bullet 1 m_{A C}=1 \therefore \tan ^{-1} 1=\theta=45^{\circ}$ - $2 m_{C D}=\frac{-2+8}{6+6}=0 \cdot 5 \therefore \tan ^{-1} 0 \cdot 5=26 \cdot 6^{\circ}$ -3 $45-26 \cdot 6=18^{\circ}$
2.	\quad ans: $\{19 \cdot 5,160 \cdot 5,210,330\}$ $\mathbf{5}$ marks \bullet For correct substitution \bullet For re-arranging to quadratic $\bullet 3$ Factorising to two roots $\bullet 4$ Two ans. from one root $\bullet 5$ Two ans. from second root	-1 $\sin x-3\left(1-2 \sin ^{2} x\right)+2=0$ -2 $6 \sin ^{2} x+\sin x-1=0$ -3 $\sin x=\frac{1}{3}$ or $\sin x=-\frac{1}{2}$ - $419 \cdot 5^{\circ}, 160 \cdot 5^{\circ}$ - $5210^{\circ}, 330^{\circ}$
3.	(a) ans: proof 3 marks - 1 For expanding original functions - 2 For correct substitution - 3 For expanding to answer (b) ans: $\mathrm{x}=1$, proof 4 marks - 1 Knowing to use synthetic division - 2 Finding the root , $x=1$ - 3 Using $\mathrm{x}=1$ again ! - 4 Showing remaining quotient has no roots	(a) •1 $f(x)=x^{2}+3 x+2, g(x)=x^{2}-2 x$ - $2 h(x)=\left(x^{2}-2 x\right)^{2}+3\left(x^{2}-2 x\right)+2$ - $3 h(x)=x^{4}-4 x^{3}+4 x^{2}+3 x^{2}-6 x+2$ (b) $\bullet 1 \begin{array}{llllll}1 & -4 & 7 & -6 & 2\end{array}$ - 21 - 31 again leaves quot. $x^{2}-2 x+2$ - 4 for $b^{2}-4 a c=-4 \therefore$ no more roots
4.	(a) ans: $\mathrm{C}_{1}(-8,-6), \mathrm{C}_{2}(16,4) \quad 2$ marks - 1 For first centre - 2 For second centre (b) ans: $r_{1}=10, r_{2}=10, d=26 \quad 4$ marks -1 Finding r of C_{1} -2 Finding r of C_{2} - 3 For method (dist. form , pyth, etc.) - 4 For correct distance	(a) $\quad \bullet \quad \mathrm{C}_{1}(-8,-6)$ - $2 \mathrm{C}_{2}(16,4)$ (b) •1 $r=\sqrt{(-8)^{2}+(-6)^{2}-0}=\sqrt{100}=10$ - $2 r=\sqrt{100}=10$ - $3 d=\sqrt{\left(x_{2}-x_{1}\right)^{2} \ldots \ldots . .} \quad$ etc. -4 $d=\sqrt{676}=26$

	Give 1 mark for each -	Illustration(s) for awarding each mark
4.	(c) ans: $\mathrm{C}_{3}(4,-1), r=3 \quad 3$ marks $(x-4)^{2}+(y+1)^{2}=9$ - 1 For centre - 2 For radius - 3 For sub. into equ. to answer	(c) $\bullet 1$ Centre must be mid-pt $\mathrm{C}_{3}(4,-1)$ - $2 r=(26-20) \div 2=3$ - $3(x-4)^{2}+(y+1)^{2}=9$ or $x^{2}+y^{2}-8 x+2 y+8=0$
5.	(a) ans: $p=2$ - 1 For calculating magnitude of F_{1} - 2 For equating second magnitude - 3 Answer (b) ans: $\theta=93 \cdot 6^{\circ}$ 3 marks -1 For scalar product of F_{1} and F_{2} - 2 For $\cos \theta=$ \qquad - 3 Answer	(a) $\bullet 1 \quad\left\|F_{1}\right\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3$ -2 $\left\|F_{2}\right\|$ then $p^{2}+2+3=9$ (or equiv.) - $3 p=2$ (b) $\quad \bullet 1 \quad F_{1} \cdot F_{2}=\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -\sqrt{2} \\ \sqrt{3}\end{array}\right)=4-2 \sqrt{2}-\sqrt{3}$ -2 $\cos \theta=\frac{4-2 \sqrt{2}-\sqrt{3}}{3 \times 3}$ - $3 \theta=93 \cdot 6^{\circ}$
6.	(a) ans: $P(1,-2), R(3,0) \quad 6$ marks - 1 Preparing to differentiate - 2 Knowing to solve deriv. to zero - 3 Differentiating - 4 Solving to answer for x coord. of P - 5 Finding y coord. of P - 6 Finding root (coords. of R) (b) ans: Area $=2.55$ units $^{2} \quad 5$ marks -1 For setting up correct integral - 2 For integrating first term - 3 Integrating $2^{\text {nd }}$ term - 4 Substituting limits - 5 Calculations to answer	(a) •1 $f(x)=x^{\frac{3}{2}}-3 x^{\frac{1}{2}}$ - 2 S.P. when $f^{\prime}(x)=0$ (stated or impl.) - $3 f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-\frac{3}{2} x^{-\frac{1}{2}}$ (or equivalent) -4 $\frac{3 \sqrt{x}}{2}-\frac{3}{2 \sqrt{x}}=0 \quad(\times 2 \sqrt{x})$ $3 x-3=0 \quad \therefore x=1$ - $5 y=\sqrt{1}(1-3)=-2$ -6 $x-3=0 \quad, x=3$ (b) $\quad 1 \quad \mathrm{~A}=-\int_{1}^{3} x^{\frac{3}{2}}-3 x^{\frac{1}{2}} d x$ - 2 $\frac{2}{5} x^{\frac{5}{2}} \quad$ (or equivalent) - 3 $2 x^{\frac{3}{2}}$ (or equivalent) - $4 \mathrm{~A}=-\left[\frac{2}{5}\left(3^{\frac{5}{2}}\right)-2\left(3^{\frac{3}{2}}\right)\right]-\left[\frac{2}{5}-2\right]$ - $5 \mathrm{~A}=-[6 \cdot 24-10 \cdot 39]-[-1 \cdot 6]=2 \cdot 56$
7.	(a) ans: proof \quad 2 marks \bullet - 1 - 2 For knowing to involve trig ratios (b) ((a) $\bullet 1 \sin x=\frac{o}{d} \Rightarrow \ldots$ etc. -2 $Q R=d \sin x$ and $P Q=d \cos x$ (b) $\bullet \quad P=d+d \cos x+d \sin x$ - $2 P=d+d(\cos x+\sin x)$ - $3 \cos x+\sin x=k \cos (x-\alpha)$ $=k \cos x \cos \alpha+k \sin x \sin \alpha$ -4 $k \sin \alpha=1, k \cos \alpha=1$ - $5 k=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ - $6 \quad \tan \alpha=\frac{1}{1}=1 \quad \therefore \quad \alpha=\pi / 4$ - $7 \quad P=d+d\left[\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)\right]$

	Give 1 mark for each •	Illustration(s) for awarding each mark
8.	(a) ans: proof -1 For attempting to use pythagoras - 2 For length x - 3 For length (4-x) - 4 For expansion to answer (b) ans: $x=2, \mathrm{OP}_{\text {min }}=\sqrt{8} \quad 4$ marks - 1 For removing common factor -2 Completing the square with $x^{2}-4 x$ - 3 Tidying to final form - 4 Answer for replacement and minimum (discretion for minimum 8 instead of $\sqrt{8}$)	(a) $\bullet 1 \mathrm{OP}^{2}=a^{2}+b^{2} \quad$ (stated or implied) - $2 \mathrm{OP}^{2}=x^{2}+\ldots \ldots \ldots$. - $3 \mathrm{OP}^{2}=\ldots \ldots \ldots . .+(4-x)^{2}$ - $4 \mathrm{OP}^{2}=x^{2}+16-8 x+x^{2}$ $=2 x^{2}-8 x+16$ (b) $\quad 1 \quad 2\left(x^{2}-4 x\right)+16$ - $2 \quad\left[(x-2)^{2}-4\right]$ - $3 \mathrm{OP}^{2}=2(x-2)^{2}+8$ - 4 minimum when $\mathrm{x}=2$ minimum value of $\mathrm{OP}^{2}=8$ $\therefore \mathrm{OP}_{\min }=\sqrt{8}$ NB... Pupils may use differentiation to answer this part of the question assign marks accordingly.
		Total 66 marks

