Higher Mathematics - Practice Examination E

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Higher Grade - Paper I

Time allowed - 2 hours

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used.
- 3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$

$$\cos ax \qquad \qquad \frac{1}{a}\sin ax + C$$

All questions should be attempted

1. Find
$$f'(x)$$
 when $f(x) = \frac{x^2 - \sqrt{x}}{x}$. (4)

- 2. A sequence of numbers is defined by the recurrence relation $U_{n+1} = pU_n + q$, where p and q are constants.
 - (a) Given that $U_0 = 3$, $U_1 = 2$ and $U_2 = -2$, find algebraically, the values of p and q. (3)
 - (b) Hence find U_3 . (1)
- 3. A sketch of the graph of y = f(x) where $f(x) = x^3 6x^2 + 9x 5$ is shown below. The graph has two turning points at P and Q and a y-intercept point at R.

(a) Find the equation of the tangent to the curve at R.

(b) The sketch of the derived function y = f'(x)from the above graph, is shown opposite.

Find the coordinates of A, B and C.

4. Given that x-2 is a factor of $x^3 + x^2 - (k+1)x - 4$, find the value of k and hence fully factorise the expression when k takes this value.

5. The power, P, emitting from a wave generator is given by the formula

$$P = 2\sin 15t^{\circ} + \sqrt{5}\cos 15t^{\circ} + 7 ,$$

where t is the time elapsed, in seconds, from switch on.

- (a) Express P in the form $k \cos(15t \alpha)^{\circ} + 7$, where k > 0 and $0 \le \alpha \le 360$. (4)
- (b) Hence find t when P = 9, where t lies in the interval 0 < t < 12. (4)

6. Show that
$$\int_{0}^{\frac{\pi}{12}} (1 + \cos 2x) dx = \frac{1}{12}(\pi + 3).$$
 (4)

7. A modern table top is an abstract bow shape.The table top can be modelled by a straight line and a curve.When rotated and placed on a set of rectangular axes the straight

edge can be placed along the x-axis and the curve given the equation $y = 9 - 4x^2 + 4x^3 - x^4$, as shown below.

(3)

(4)

(4)

- (a) Given that one root of the equation $9-4x^2+4x^3-x^4=0$ is 3, find the value of the other root k.
- (b) Calculate the area of the table top in square units.

© Pegasys 2005

8. The two cuboids below have equal volumes. All lengths are in centimetres.

(a) By equating the two volumes show that the following equation can be constructed

$$4x^{2} + (16 - 8c)x + (16 - 5c) = 0$$
(2)

- (b) Given that c > 0, find the value of c for which the equation $4x^2 + (16-8c)x + (16-5c) = 0$ has equal roots. (4)
- 9. The parallelogram OABC, where O is the origin, has two more of its vertices at A(3,-2,1) and C(5,6,-3), as shown in the diagram.

(a) Find \overrightarrow{AC} in component form.

(b) D is a point such that
$$\overrightarrow{BD} = \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix}$$
.

Show that A, C and D are collinear.

[END OF QUESTION PAPER]

(4)

(1)

Higher Mathematics Practice Exam E

	Give 1 mark for each •	Illustration(s) for awarding each mark
1.	ans: $f'(x) = 1 + \frac{1}{2}x^{-\frac{3}{2}}$ 4 marks •1 for dealing with the denominator •2 correct preparation •3 for diff. 1 st term •4 for diff. 2 nd term	•1 $f(x) = x^{-1}(x^2 - \sqrt{x})$ •2 $= x - x^{-\frac{1}{2}}$ •3 $f'(x) = 1 + \dots$ •4 $= \dots + \frac{1}{2}x^{-\frac{3}{2}}$
2.	 (a) ans: p = 4 , q = -10 3 marks 1 setting up a system 2 finding p 3 finding q (b) ans: -18 1 mark 1 sub. to answer 	(a) $\begin{array}{c} 2 = 3p + q \\ -2 = 2p + q \\ \bullet 2 \\ p = 4 \\ \bullet 3 \\ q = -10 \end{array}$ (b) $\begin{array}{c} \bullet 1 \\ U_3 = 4(-2) - 10 = -18 \end{array}$
3.	(a) ans: $y = 9x - 5$ 4 marks •1 establishing coords. of R •2 strategy of differentiation for <i>m</i> •3 finding <i>m</i> •4 finding equation of tangent (b) ans: A(1,0), B(3,0), C(2,-3) 4 marks •1 for knowing to relate S.P's to <i>x</i> -axis •2 solving derivative to zero •3 for A and B ($x = 1$ or $x = 3$ is o.k.) •4 for C	(a) •1 R(0,-5) •2 $f'(x) = 3x^2 - 12x + 9 = m$ (stated or implied) •3 $f'(0) = 9 = m$ •4 $y = 9x - 5$ (b) •1 attempting to find S.P.'s for roots •2 $3x^2 - 12x + 9 = 0$ •3 $x = 1 \text{ or } x = 3 \therefore A(1,0)$, B(3,0) •4 sub. 2 in deriv. $\Rightarrow C(2,-3)$
4.	 ans: k = 3, (x - 2)(x + 2)(x + 1) 4 marks 1 setting up synthetic div. 2 finding k 3 sub. k and establishing quotient 4 finding remaining factors 	•1 2 1 1 $-(k+1)$ -4 •2 $2(5-k) = 4 \implies k = 3$ •3 quo. $\implies 1$ 3 2 $\implies x^2 + 3x + 2$ •4 $(x+2)(x+1)$
5.	(a) ans: $P = 3\cos(15t - 41 \cdot 8)^{\circ} + 7$ 4 marks •1 finding k •2 knowing how to find angle •3 knowing 1 st quadrant correct angle •4 for writing form (b) ans: $t \approx 6$ sec onds 4 marks •1 knowing to solve to 9 •2 dividing by 3 •3 solving to angle •4 answer	(a) •1 $k=3$ •2 $\tan \alpha = \frac{2}{\sqrt{5}}$ •3 $\alpha = 41 \cdot 8^{\circ}$ •4 $P = 3\cos(15t - 41 \cdot 8)^{\circ} + 7$ (b) •1 $3\cos(15t - 41 \cdot 8)^{\circ} + 7 = 9$ •2 $\cos(15t - 41 \cdot 8)^{\circ} = \frac{2}{3}$ •3 $(15t - 41 \cdot 8)^{\circ} = 48 \cdot 2^{\circ}$ •4 $t \approx 6 \text{ sec onds}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
6.	ans: proof4 marks•1For integrating•2For substitution•3For simplifying•4For common factor to ans	•1 $\left[x + \frac{1}{2}\sin 2x\right]_{0}^{\frac{\pi}{12}}$ •2 $\left(\frac{\pi}{12} + \frac{1}{2}\sin \frac{\pi}{6}\right) - \left(0 + \frac{1}{2}\sin 0\right)$ •3 $\frac{\pi}{12} + \frac{1}{4}$ •4 $\frac{1}{12}(\pi + 3)$
7.	(a) ans: $k = -1$ 3 marks •1 attempting to set up synth. div. •2 for finding quotient •3 for finding factor of quotient (b) ans: $29\frac{13}{15}$ units ² 4 marks	(a) •1 3 -1 4 -4 0 9 •2 -1 1 -1 -3 •3 -1 -1 1 -1 -3 •3 -1 -1 1 -1 -3 -1 2 -3 0 $\therefore k = -1$
	 setting up correct integral integrating attempting to substitute correctly calculating the correct answer 	(b) •1 $\int_{-1}^{3} 9 - 4x^2 + 4x^3 - x^4 dx$ •2 $\left[9x - \frac{4x^3}{3} + x^4 - \frac{x^5}{5}\right]_{-1}^{3}$ •3 () - () •4 $(23\frac{2}{5}) - (-6\frac{7}{15}) = 29\frac{13}{15}$
8.	 (a) ans: proof 2 marks • 1 equating volumes • 2 expanding and rearranging as required 	(a) •1 $4(x+2)^2 = c(5+8x)$ •2 $4x^2 + 16x - 8cx + 16 - 5c = 0$ to ans.
	(b) ans: $c = \frac{11}{4}$ cm 4 marks •1 understanding procedure •2 for selecting and sub. <i>a</i> , <i>b</i> and <i>c</i> •3 expanding and arranging •4 factorising to answer	(b) •1 $b^2 - 4ac = 0$ (stated or implied) •2 $a = 4, b = 16 - 8c, c = 16 - 5c$ •3 $64c^2 - 176c = 0$ •4 $16c(4c - 11) = 0 \implies c = \frac{11}{4}$, $(c \neq 0)$
9.	(a) ans: $\vec{AC} = \begin{pmatrix} 2 \\ 8 \\ -4 \end{pmatrix}$ 1 mark	(a) $\bullet 1 \underbrace{c-a}_{\sim} = \begin{pmatrix} 2\\ 8\\ -4 \end{pmatrix}$
	 1 for answer (b) ans: proof 4 marks * there are a few different methods for (b) 1 for establishing coords. of B 2 for establishing coords. of D 	(b) •1 B(8,4,-2) •2 D(6,10,-5) •3 $\vec{CD} = c - d = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$
	 •3 for CD in component form •4 ans.(common point should be mentioned) 	• 4 since $\vec{AC} = 2\vec{CD}$, and C is a common point, then A, C and D are collinear Total 50 marks

Higher Mathematics - Practice Examination E

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Higher Grade - Paper II

Time allowed - 2 hours 40 mins

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used.
- 3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a} \cos ax + C$$

$$\cos ax \qquad \qquad \frac{1}{a} \sin ax + C$$

All questions should be attempted

1. The diagram below shows two overlapping circles. The larger of the two has as its equation $x^2 + y^2 - 6x - 10y + 16 = 0$ and the smaller $x^2 + y^2 = 8$.

- 2. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + k$, where a and k are constants.
 - (a) Given that $U_0 = 6$, write down an expression for U_1 in terms of *a* and *k*. (1)
 - (b) Hence show that U_2 can be written as $U_2 = 6a^2 + ka + k$. (1)

(c) Given now that
$$U_2 = 0$$
, find k, where $k > 0$, if $6a^2 + ka + k = 0$ has equal roots. (3)

(2)

(d) Now find a when k takes this value.

3. Solve the equation $2(2\cos 2x^\circ + \cos x^\circ) = -3$ in the interval $0 \le x \le 360$. (5)

4. In a marine tank the amount of salt in the water is crucial for the health of the fish. Recommended limits give a salt solution of between 41 and 55 grammes per gallon (g/gallon).

It is known that the strength of the salt solution decreases by 15% every day. To combat this, salt is added at the **end** of each day, which effectively increases the strength of the solution by 8 g/gallon, thus creating a closed system.

To allow the plants to acclimatise the initial strength in the tank has to be 45 g/gallon.

- (a) For how many days should the system be run before the introduction of fish ? (3)
- (b) In the long term will the strength of the solution remain within safe limits ? Give reasons.
- 5. The diagram shows a sketch of the graph of $y = x^3 - 3x - 4$.

The tangents at the turning points of the curve meet the curve again at the points A and B as shown.

- (a) Find the coordinates of the two stationary points T_1 and T_2 .
- (b) Establish the coordinates of A and B.
- (c) Show that the tangents to the curve at A and B are parallel.

- 6. The functions $f(x) = \frac{1}{\frac{1}{2}x+1}$ and $g(x) = 2x^2 4$ are defined on suitable domains.
 - (a) Given that h(x) = f(g(x)), show that h(x) can be written as

$$h(x) = \frac{1}{(x-1)(x+1)} .$$
 (2)

- (b) State a suitable domain for h(x).
- (c) Show that there are two values of x for which the functions f and h have the same image but that they are both irrational.

(4)

(1)

(3)

- 7. The diagram shows a sketch of the curve $y = 4x x^2$ and the line y = 3.
 - (a) Establish the coordinates of the points P and Q.
 - (b) Calculate the shaded area in *diagram* 1.
 - (c) Hence calculate the shaded area in *diagram* 2.

8. A cone is such that the **sum** of its base **diameter** and its vertical height is 18cm.

- (a) For this cone, write down an expression for the height (*h*) in terms of the radius (*r*).
- (b) Given that the formula for the volume of any cone is $V = \frac{1}{3}\pi r^2 h$, show that a function for the volume of this cone can be expressed as

$$V(r) = 6\pi r^2 - \frac{2}{2}\pi r^3$$

- (c) Hence find the value of r which will maximise the volume of the cone, and calculate this maximum volume in cubic centimetres.
- 9. Two forces are represented by the vectors $F_1 = 2i + j 2k$ and $F_2 = \sqrt{3}i + k$.

Calculate the angle between these two forces.

[END OF QUESTION PAPER]

(5)

(5)

Higher Mathematics Practice Exam E

	Give 1 mark for each •	Illustration(s) for awarding each mark
1.	 (a) ans: C(3,5) 1 mark 1 for extracting centre 	(a) •1 C(3,5)
	 (b) ans: B(6,2) 1 mark •1 establishing coords. of B 	(b) •1 B(6,2)
	(c) ans: $y = x - 4$ 3 marks •1 for gradient of CB (or equiv.) •2 knowing $m_1 \times m_2 = -1$, and m_{tan} •3 for equation	(c) •1 $m = \frac{2-5}{6-3} = -1$ •2 $\therefore m_{tan} = 1$ •3 $y - 2 = 1(x - 6)$
	 (d) ans: T(2,-2) 4 marks 1 setting up a system 2 solving system correctly 3 stating 1 root (1 ans.) = a tangent 4 completing point T 	(d) •1 solve $\begin{cases} x^2 + y^2 = 8 \\ y = x - 4 \end{cases}$ •2 $2(x - 2)^2 = 0 \therefore \ x = 2 \text{(twice)}$ •3 written statement (1 ans., 1 point) •4 $y = 2 - 4 \therefore \ y = -2 \text{, T}(2, -2)$
2.	(a) ans: $U_1 = 6a + k$ 1 mark • 1 substituting	(a) •1 $U_1 = aU_0 + k \implies U_1 = 6a + k$
	 (b) ans: proof 1 mark 1 correct substitution to ans. 	(b) •1 $U_2 = aU_1 + k$ = $a(6a + k) + k$ = $6a^2 + ka + k$
	(c) ans: $k = 24$ 3 marks •1 use of the discriminant •2 correct substitution (of <i>a</i> , <i>b</i> and <i>c</i>) •3 solving to answer (d) ans: $a = -2$ 2 marks	(c) •1 for equal roots $b^2 - 4ac = 0$ (stated or implied) •2 $k^2 - 4(6)(k) = 0$ •3 $k(k-24) = 0$ \therefore $k = 24$ $(k \neq 0)$
	1 setting up equ. to solve2 solving to ans.	(d) •1 $6a^2 + 24a + 24 = 0$ •2 $6(a+2)(a+2) = 0$ \therefore $a = -2$
3.	 ans: {75 · 5°, 120°, 240°, 284 · 5°} 5 marks 1 correct double angle sub. 2 manipulation to factorising 3 first angle from first factor 4 first angle from second factor 5 remaining two angles 	•1 $4(2\cos^2 x - 1) + 2\cos x + 3 = 0$ •2 $(4\cos x - 1)(2\cos x + 1) = 0$ •3 $x = 75 \cdot 5^{\circ}$ •4 $x = 120^{\circ}$ •5 $x = 240^{\circ}$, $284 \cdot 5^{\circ}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
4.	 (a) ans: 4 days 3 marks 1 setting up recurrence 2 knowing to look at low value (before +8) 3 calculations and answer 	(a) •1 $U_1 = 0.85(45) + 8$ •2 $U_1 = 0.85(45) = 38 \cdot 25 + 8 = 46 \cdot 25$ •3 $U_4 = 0.85(48 \cdot 21) = 40.98 + 8 = 48 \cdot 98$ next day low value will be > 41.
	 (b) ans: Yes (+ reasons from limits) 3 marks 1 stating why limit exists 2 calculating limit 3 considering upper and lower limit in conclusion (own discretion) 	 (b) •1 limit exists because -1 < a < 1 •2 L = b/(1-a) = 53¹/₃ (or equiv.) •3 solution will always have a strength of between 45¹/₃ and 53¹/₃ g/gallon.
5.	(a) ans: $T_1(-1,-2)$, $T_2(1,-6)$ 4 marks •1 knowing to differentiate •2 differentiating •3 solving for <i>x</i> coords. •4 completing points (b) ans: A(-2,-6), B(2,-2) 4 marks •1 attempting to solve for <i>x</i> •2 using synth. div. (or trial & error) for A •3 using synth. div. (or trial & error) for B •4 completing points (c) ans: $m_1 = m_2 = 9$ \therefore parallel 2 marks •1 for sub. <i>x</i> values into derivative •2 statement equal gradients are parallel	(a) •1 for S.P.'s $\frac{dy}{dx} = 0$ (stated or implied) •2 $\frac{dy}{dx} = 3x^2 - 3$ •3 $3(x^2 - 1) = 0 \therefore x = \pm 1$ •4 $T_1(-1,-2)$, $T_2(1,-6)$ (b) •1 for A $x^3 - 3x - 4 = -6$, etc. •2 for A -2 $1 0 -3 2$ •3 for B 2 $1 0 -3 -2$ •4 A(-2,-6), B(2,-2) (c) •1 @ A, $m = 3(-2^2) - 3 = 9$ @ B, $m = 3(2^2) - 3 = 9$ •2 since gradients are equal the two tangents are parallel
6.	(a) ans: proof2 marks•1correct substitution•2manipulation to answer(b) ans: $x \neq \pm 1$ 1 mark•1answer(a) ans: proof4 marks•1equating functions•2manipulation to quadratic•3use of discriminant (or equiv.)•4statement/conclusion	(a) •1 $f(g(x)) = \frac{1}{\frac{1}{2}(2x^2 - 4) + 1}$ •2 $\dots = \frac{1}{x^2 - 2 + 1} = \frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)}$ (b) •1 $x \neq \pm 1$ (c) •1 $\frac{1}{x^2 - 1} = \frac{1}{\frac{1}{2}x - 1}$ •2 $\frac{1}{2}x - 1 = x^2 - 1 \Rightarrow x - 2 = 2x^2 - 2$ $\Rightarrow 2x^2 - x - 4 = 0$ •3 $b^2 - 4ac = 1 - (4(2)(-4)) = 33$ •4 roots are real, <u>distinct</u> and <u>irrational</u> (or equivalent explanation)

	Give 1 mark for each •	Illustration(s) for awarding each mark
7.	 (a) ans: P(1,3) , Q(3,3) 2 marks 1 for equating 2 solving and stating points 	(a) •1 $4x - x^2 = 3$ (or equivalent) •2 $x^2 - 4x + 3 = 0 \Rightarrow x = 1$ or $x = 4$ $\Rightarrow P(1,3)$, Q(3,3) (b) •1 $\int [(4x - x^2) - 2] dx$
	(b) ans: $1\frac{1}{3}$ units ² 5 marks • 1 setting up integral • 2 for limits • 3 integrating • 4 for subst. numbers • 5 calculating answer (c) ans: $9\frac{1}{3}$ units ² 3 marks	(b) •1 $\int [(4x - x^2) - 3] dx$ pupils may integrate between ordinates and subtract a rectangle •2 \int_{1}^{3} •3 $\left[2x^2 - \frac{x^3}{3} - 3x\right]_{1}^{3}$ •4 $(18 - 9 - 9) - (2 - \frac{1}{2} - 3)$ •5 $1\frac{1}{3}$
	(c) ans: $9\frac{1}{3}$ units ² 3 marks •1 finding root for limit •2 calc. area between curve and <i>x</i> -axis •3 subtracting for answer	(c) •1 $4x - x^2 = x(4 - x) = 0$ \therefore $x = 4$ •2 $\int_0^4 4x - x^2 = 10\frac{2}{3}$ •3 $10\frac{2}{3} - 1\frac{1}{3} = 9\frac{1}{3}$
8.	(a) ans: $h = 18 - 2r$ 1 mark • 1 answer	(a) •1 $d+h=18 \Rightarrow 2r+h=18$
	(b) ans: proof 2 marks •1 knowing to substitute for h •2 processing to answer (c) ans: $r = 6cm$, $V = 72\pi$ or $226 \cdot 1 \text{ cm}^3$	$\therefore h = 18 - 2r$ (b) •1 $V = \frac{1}{3}\pi r^{2}(18 - 2r)$ •2 $V = 6\pi r^{2} - \frac{2}{3}\pi r^{3}$
	5 marks•1method (differentiation)•2differentiation•3solving for r •4proving a maximum (nature table)•5calculating V (multiple of π or not)	(c) •1 $V'(r) = 0 \ at \ max.$ (stated or implied) •2 $V'(r) = 12\pi r - 2\pi r^2$ •3 $2\pi r(6-r) = 0 \therefore r = 6$, $r = 0$ •4 nature table showing a maximum •5 $V(6) = 216\pi - 144\pi = 72\pi \ cm^3$
9.	ans: $75 \cdot 9^{\circ}$ 5 marks•1for dealing with unit vector notation•2magnitude of F_1 •3magnitude of F_2 •4for scalar product•5for answer	•1 $F_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, F_2 = \begin{pmatrix} \sqrt{3} \\ 0 \\ 1 \end{pmatrix}$ •2 $F_1 = \sqrt{4+1+4} = 3$ •3 $F_2 = \sqrt{3+1} = 2$ •4 $F_1 \cdot F_2 = 2\sqrt{3} + 0 - 2$ •5 $75 \cdot 9^\circ$ Total 67 marks