Higher Mathematics - Practice Examination D

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Higher Grade - Paper I

Time allowed - 2 hours

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used.
3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{ }\left(g^{2}+f^{2}-c\right)$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cos 2 A
\end{aligned}=\cos ^{2} A-\sin ^{2} A \quad \begin{aligned}
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cr}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{cc}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. The parallelogram PQRS has three of its vertices as $P(1,5), Q(-1,-3)$ and $R(3,-1)$.
(a) Establish the coordinates of the fourth vertex S.
(b) Hence find the equation of the diagonal QS.
2. Find $\frac{d y}{d x}$, given that $y=\frac{1}{8}(1+2 x)^{4}-\cos 3 x$.
3. Part of the graph of $y=f(x)$ is shown in the diagram.

Sketch the graph of $y=-f(x+2)$, showing all the relevant points.

(3)
4. The functions f and g are defined on suitable domains and are given as

$$
\begin{equation*}
f(a)=3 a-2 b \quad \text { and } \quad g(a)=5(a+2 b), \text { where } b \text { is a constant. } \tag{2}
\end{equation*}
$$

Find an expression for $g(f(a))$ in its simplest form.
5. A recurrence relationship is defined as $U_{n+1}=0 \cdot 5 U_{n}+16$ with $U_{0}=128$
(a) Find the limit (L) of this sequence.
(b) Given that $U_{n}-L=6$, find n.
6. A small plastic block has a rectangular whole punched through it as shown.
All the lengths are in centimetres.
(a) Given that the volume of plastic in the block
 is 80 cubic centimetres, show, that to find x, the equation $x^{3}+5 x^{2}+6 x-40=0$ must be solved.
(b) Solve the equation and show that it has only one real root. Hence state the outside dimensions of the block.
7. Find the equation of the tangent to the curve $y=x^{2}+3 x+5$ at the point where the curve crosses the y-axis.
8. A logarithmic equation is given as

$$
\frac{1}{2} \log _{x}(3 x-2)=1, \text { where } x \neq 1
$$

Solve this equation for x.
9. The diagram shows a sketch of the graph of $y=\frac{1}{3} x^{3}+x^{2}-8 x-\frac{26}{3}$.

(a) Find algebraically the coordinates of the two stationary points A and B.
(b) Find the equation of the line AB and hence prove that this line passes through one of the points where the curve crosses the x-axis.
10. A circle has as its equation $x^{2}+y^{2}+6 x-4 y=0$.

Find the equation of the tangent at the point $\mathrm{P}(-1,5)$ on the circle.
11. The gradient of the tangent at any point (x, y) on a curve is given by $\frac{d y}{d x}=2+\frac{8}{x^{2}}$.

Given that the point $(1,4)$ lies on this curve, express y in terms of x.
12. The diagram features two right-angled triangles positioned as shown.

$$
\mathrm{QS}=\mathrm{PT}=x, \mathrm{ST}=1, \mathrm{PQ}=\sqrt{5} \text { and } \mathrm{SR}=\sqrt{5} x
$$

(a) By applying Pythagoras' Theorem to $\triangle \mathrm{PQT}$, form an equation in x and solve it to find x.
(b) Hence calculate the length of QR .
(c) Show that the exact value of $\operatorname{Sin} P Q R$ is given as

$$
\begin{equation*}
\operatorname{Sin} P Q R=\frac{7}{18} \sqrt{6} \tag{4}
\end{equation*}
$$

1. (a) For finding $S(5,7)$ (by stepping-out or equiv.)
(b) For gradient ... $m_{Q S}=\frac{10}{6}=\frac{5}{3}$
[1 mark]

For equ. $y-7=\frac{5}{3}(x-5)$, (or equiv.), to $3 y=5 x-4$
[2 marks]
2. For $4 \times \frac{1}{8}(1+2 x)^{3} \times 2=(1+2 x)^{3}$
(for $4 \times$ and power of $3 . .(1)$, for $\times 2$.. (1))
For $-(-\sin 3 x \times 3)=3 \sin 3 x$
(for $-\sin 3 x \times 3 \ldots$ (1) , for $-(-)=+\ldots$ (1))
[4 marks]
3. For knowing to reflect in x -axis

For knowing to move 2 units to the left
For completing the sketch and marking the two points

4. For $g(f(a))=5(3 a-2 b)+10 b \quad$ (or equivalent)
.......... (1)
For simplifying to answer $g(f(a))=15 a$
[2 marks]
5. (a) For $L=\frac{b}{1-a} \quad$ (or equiv.) $=\frac{16}{1-0 \cdot 5}=32$
[1 mark]
(b) For realising $U_{\mathrm{n}}=38$ (stated or implied) and starting with $U_{1}=$..

For $\mathrm{U}_{1}=05(128)+16=80$
For successive lines of working until $U_{4}=38 \quad \therefore n=4$
6. (a) For $2 x(x+2)(x+6)-6 x(x+2)=80 \quad$ (or eqiv.)

For simplifying to ans. given $\ldots x^{3}+5 x^{2}+6 x-40=0$
(b) For deciding on method e.g. synthetic division

For finding that 2 gives a remainder $=0 \Rightarrow x=2$.
For using the quotient $x^{2}-7 x+20=0$ and showing that it
has no real roots (i.e. $b^{2}-4 a c<0$), \therefore no more roots
For final ans. $x=2$........ block $\Rightarrow 8 \times 4 \times 4 \mathrm{~cm}$
7. For obtaining y-intercept $(0,5)$

For knowing to differentiate for gradient
For diff. correctly to $\ldots \frac{d y}{d x}=2 x+3=m$
For sub. $x=0$ into derivative to find that $m=3$
For sub. $m=3$ and $(0,5)$ into equ. of line to ans..... $y=3 x+5$
8. For lifting to power $\ldots . . \quad \log _{x}(3 x-2)^{\frac{1}{2}}=1$

For removing logs $\quad \ldots . x^{1}=(3 x-2)^{\frac{1}{2}}$
For squaring both sides $\quad \ldots \quad x^{2}=3 x-2$
Solving to answer $\quad((x-2)(x-1)=0 \quad \therefore x=2$
9. (a) For knowing to differentiate and solve to zero

For differentiating correctly to .. $\frac{d y}{d x}=x^{2}+2 x-8=0$
For solving to $x=-4$ or $x=2$
For completed points (1 mark each) $\mathrm{A}(-4,18)$ and $\mathrm{B}(2,-18)$
(b) For gradient of $\mathrm{AB} \ldots . m=-6$

For equ. of $\mathrm{AB} \ldots . y-18=-6(x+4) \Rightarrow y=-6 x-6$ or equiv.
For finding where line crosses x-axis i.e $(-1,0)$
For sub. $x=-1$ into equ. of curve to show that $y=0$, etc.
(i.e. proving that $(-1,0)$ lies on curve and the line)
10. For drawing out the centre $C(-3,2)$

For finding the gradient of the radius $\mathrm{m}_{\mathrm{CP}}=\frac{3}{2}$
For gradient of tangent $\mathrm{m}_{\mathrm{tan}}=-\frac{2}{3}$
For ans. $y-5=-\frac{2}{3}(x+1) \Rightarrow 2 x+3 y=13 \quad$ (or equiv.)
11. For knowing to integrate for " $y="$

For integrating to $y=2 x+\frac{8 x^{-1}}{-1}+C \quad$ (or equiv.)
For knowing to sub. to find C.. i.e. $4=2(1)-\frac{8}{1}+C$
For $\quad C=10 \quad \therefore \quad y=2 x-\frac{8}{x}+10 \quad \ldots .$. (or equiv.)
12. (a) For $(x+1)^{2}=x^{2}+(\sqrt{5})^{2}$

For answer $\quad x=2$
[2 marks]
(b) For $Q R^{2}=2^{2}+(2 \sqrt{5})^{2} \Rightarrow \therefore Q R=\sqrt{24}$ or $2 \sqrt{6}$
[1 mark]
(c) For knowing to use

$$
\begin{equation*}
\sin P Q R=\sin (a+b)=\sin a \cos b+\cos a \sin b \quad \text { (or equiv.) } \tag{1}
\end{equation*}
$$

\qquad
For lifting correct values to.. $=\frac{2}{3} \cdot \frac{2}{2 \sqrt{6}}+\frac{\sqrt{5}}{3} \cdot \frac{2 \sqrt{5}}{2 \sqrt{6}}$ (or equiv.) \qquad

For simplifying to $\sin P Q R=\frac{7}{3 \sqrt{6}} \quad$ (or equiv.)
For rationalising denom. to final ans $\operatorname{Sin} P Q R=\frac{7}{18} \sqrt{6}$

Higher Mathematics - Practice Examination D

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS
 Higher Grade - Paper II

Time allowed - 2 hours 40 mins

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used.
3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\left.\sqrt{(} g^{2}+f^{2}-c\right)$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cos 2 A
\end{aligned}=\cos ^{2} A-\sin ^{2} A \quad \begin{aligned}
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cc}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{cc}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. Triangle $P Q R$ has as its vertices $P(-6,-3), Q(2,-7)$ and $R(5,9)$.

(a) Find the equation of the median RS.
(b) Show that this median is at right-angles to side PQ .
(c) What type of triangle is PQR ?
2. The functions f and g, defined on suitable domains, are given as

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(2+x^{2}\right) \quad \text { and } \quad g(x)=k(6 x-3) . \tag{2}
\end{equation*}
$$

(a) Given that $f(4)=g(5)$, find the value of k.
(b) Find an expression for $g(f(x))$.
(c) Find x when $g(f(x))=2 g(x)$.
3. Solve algebraically the equation

$$
\begin{equation*}
3 \sin x^{\circ}+4 \sin 2 x^{\circ}=0, \quad 0<x<360 \tag{6}
\end{equation*}
$$

4. Evaluate $\int_{0}^{3} \frac{1}{x}\left(x^{3}-2 x^{2}\right) d x$
5. The height, H metres, after t seconds, of an arrow fired vertically upwards from a toy bow is given by the equation

$$
H=40 t-16 t^{2}
$$

(a) Find the velocity of the arrow after 1 and after 2 seconds.

Explain the significance of the change of sign between these two velocities.
(b) Find the maximum height to which the arrow rises.
6. In a commercial laundry a certain material is washed in a solution of water and bleach. This washing solution is kept in a large vat and is continuously recycled through the cleaning machines.The solution is renewed each day.
At the beginning of each day fresh bleach and clean water are mixed in the vat. The initial strength of the bleach is 20 units/gallon.

It has been found, that in every hour of use, the bleach loses 12% of its strength.
(a) Calculate the strength of the bleach after 4 hours of use.

Give your answer correct to two decimal places.
(b) It is known that if the strength of the bleach drops below 10 units/gallon the solution will no longer be an efficient cleaning agent.
The company decide to add a quantity of fresh bleach to the solution every 4 hours. This has the immediate effect of raising the overall strength of the bleach by 6 units/gallon.
Comment on whether or not this policy is effective.
Your answer must be accompanied with the appropriate working.
7. A rectangular water tank has a volume of $22 x-27$ cubic metres. Its base has dimensions $2 x-1$ metres by $x+1$ metres as shown.
(a) From this information, and from the fact that $h=\frac{V}{l b}$,
 write down a simple equation, in x, for the height, h, of the tank.
(b) Hence show that this equation can be written in the form

$$
\begin{equation*}
2 h x^{2}+(h-22) x+(27-h)=0 \tag{3}
\end{equation*}
$$

(c) Show that if $h=2$ this equation has equal roots.
(d) Using this value for h, solve the equation for x and hence state the dimensions and volume of the tank.
8. The points $\mathrm{A}(-3,0)$ and $\mathrm{B}(1,2)$ both lie on the circumference of a circle, centre C , as shown.
(a) Find the equation of the perpendicular bisector of the chord AB .
(b) Hence find the coordinates of the centre of the circle, C , given that the line with equation $y=2 x-5$ passes through C .

$$
\begin{equation*}
y=2 x-5 \tag{3}
\end{equation*}
$$

(c) Find the equation of the circle.
9. The diagram shows the parabolas $y=12+4 x-x^{2}$ and $y=2 x^{2}-2 x+3$.

(a) Establish the coordinates of the two intersection points P and Q .
(b) Find the area enclosed between the two curves.
(c) Find the equation of the line PQ
(d) Hence show that the line PQ splits the shaded area in the ratio $2: 1$.
10. One of the concrete supports for a small road bridge is cylindrical in shape.

Its total surface area, A_{s}, is 24 square metres.
(a) Given that the formula for the surface area, A_{s}, of a solid cylinder, is given as

$$
A_{s}=2 \pi r^{2}+2 \pi r h,
$$

show that, for this cylinder, $h=\frac{12}{\pi r}-r$, where h is its height and r is the radius of its base.
(b) Hence show that the volume of this cylinder can be expressed as

$$
\begin{equation*}
V(r)=12 r-\pi r^{3} . \tag{2}
\end{equation*}
$$

(c) Find the area of the base when the volume of the cylinder is at a maximum.
11. A cuboid with dimensions 12 cm by 4 cm by 4 cm is placed relative to a set of coordinate axes as shown in the diagram. F has coordinates ($12,4,4$)
M is the mid-point of $O A$ and N is the mid-point of $A B$.

(a) Write down the coordinates of M and N .
(b) Calculate the size of angle MFN .
1.
(a) For coordinates of S $\mathrm{S}(-2,-5)$
For gradient of median $m_{R S}=2$
For equ. of median ans $y=2 x-1$
(b) For selecting a strategy i.e. $m_{1} \times m_{2}=-1$
For proving i.e. $2 \times-\frac{1}{2}=-1 \quad \therefore \quad$ right-angled
For proving i.e. $2 \times-\frac{1}{2}=$
(c) For ans isosceles
[1 mark]
2. (a) For $f(4)=9$ and $g(5)=27 k$ (or equiv.)
For equating and solving to answer $k=\frac{1}{3}$
[2 marks]
(b) For $g\left(\frac{1}{2}\left(2+x^{2}\right)\right)=2\left\lfloor\frac{1}{2}\left(2+x^{2}\right)\right\rfloor-1$ (or equiv.)
For simplifying to answer $g(f(x))=x^{2}+1$
(c) For $x^{2}+1=2(2 x-1) \quad$ (or equiv.)
For solving to answer i.e.

$$
\begin{equation*}
x^{2}-4 x+3=0 \Rightarrow(x-1)(x-3)=0 \therefore x=1 \text { or } x=3 \tag{1}
\end{equation*}
$$

3. For $3 \sin x+4(2 \sin x \cos x)=0$

For $3 \sin x+8 \sin x \cos x=\sin x(3+8 \cos x)=0$
For $\sin x=0 \quad$ or $\quad \cos x=-\frac{3}{8}$
Then for $\ldots . . \sin x=0$ then $x=180^{\circ}$
Then for $\cos x=-\frac{3}{8}$ then $x=112 \cdot 0^{\circ}$ or $248 \cdot 0^{\circ}$ (1 each)
[6 marks]
4. For $\int_{0}^{3}\left(x^{2}-2 x\right) d x$
then $\quad\left[\frac{x^{3}}{3}-\frac{2 x^{2}}{2}\right]_{0}^{3} \quad$ (or equivalent)
then $\quad\left(\frac{27}{3}-\frac{18}{2}\right)-(0)$
For answer 0
(1)
5. a) For knowing to differentiate for velocity

For substituting 1 and 3 into derivative $\ldots v^{\prime}(t)=40-32 t$
For answers $8 \mathrm{~m} / \mathrm{s}$ and $-24 \mathrm{~m} / \mathrm{s}$
For explanation i.e rising then falling, different direction, etc.
(b) For knowing to solve derivative to zero

For $\therefore t=\frac{5}{4}$ seconds @ maximum
For $\therefore t=\frac{5}{4}$ seconds @ maximum
For sub. in $H=\ldots \ldots$. to answer $H=25$ metres
For solving $40 t-\frac{\mathbf{0 r}}{16} t^{2}=0 \quad$.......... (1)
For t half-way between roots 0 and $\frac{5}{2}, \therefore t=\frac{5}{4} s \quad$.......... (1)
For sub. in $H=\ldots \ldots$. to answer $H=25$ metres (1)
6. (a) For correct multiplier i.e. 0.88

For Strength $=(0 \cdot 88)^{4} \times 20$

$$
\begin{equation*}
=11.99 \text { units } \tag{1}
\end{equation*}
$$

(pupils may use four lines of working)
(b) For setting up recurr. .. $U_{n+1}=(0 \cdot 88)^{4} . U_{n}+6$ (or equiv.)

For setting out at least four lines of calculations
For knowing to look at lower value before adding 6
For discovering ans.... that by end of the fourth cycle (i.e. 16 hours)
strength is ≈ 9.64 (immediately before 6 is added)
...... policy is not acceptable
(for only looking at upper value and ans. o.k., fundamental error, 2/4) [4 marks]
** note : limit cannot be applied as after the 6 cycles ($\times 4 \mathrm{hrs}$) situation is re-set.
7. (a) For ans. $h=\frac{V}{l b}=\frac{22 x-27}{(2 x-1)(x+1)} \quad$ (or equiv.)
(b) For knowing to change towards standard quad. form

$$
\begin{equation*}
\text { For } \quad 2 h x^{2}+h x-h=22 x-1 \tag{1}
\end{equation*}
$$

For arranging to ans $2 h x^{2}+(h-22) x+(27-h)=0$
(c) For knowing to sub. $h=2$ into equation

For stating or showing its a perfect square $(2 x-5)^{2}=0$
and explaining it has only one root
(pupils may use discriminant ... for equal roots $b^{2}-4 a c=0$
(d) For solving $(2 x-5)^{2}=0 \quad \ldots$ ans $x=2 \cdot 5$ metres

For $\ldots . . \quad \therefore$ dimensions $4 \times 3 \cdot 5 \times 2$ metres and $V=28 \mathrm{~m}^{3}$
8. (a) For $m_{\mathrm{AB}}=\frac{1}{2}$ then $m_{\text {perp }}=-2$

For mid-point M(-1,1)
For correct gradient and point to $. . y-1=-2(x+1) \Rightarrow 2 x+y+1=0$
(b) For knowing perp. bisec. passes through centre (stated or implied)

For knowing to solve as a system $\left\{\begin{array}{l}2 x+y=-1 \\ y=2 x-5\end{array}\right\}$
For solving to answer \qquad $\mathrm{C}(1,-3)$
(c) For finding r^{2} by Pyth. or noticing that B is vert. above $\mathrm{C}, r=5$

For knowing to sub. r^{2} and $\mathrm{C}(1,-3)$ into $(x-a)^{2}+(y-b)^{2}=r^{2}$
For final answer \qquad $(x-1)^{2}+(y+3)^{2}=25$
9. (a) For setting up the system .. $12+4 x-x^{2}=2 x^{2}-2 x+3$ (or equiv.) \qquad
For simplifying to .. $\quad 3\left(x^{2}-2 x-3\right)=0$
For solving to $x=-1$ and $x=3$ then to $\mathrm{P}(-1,7)$ and $\mathrm{Q}(3,15)$
(b) For setting-up corredt integral i.e. $\int_{-1}^{3}\left(-3 x^{2}+6 x+9\right) d x$

For integrating to $\mathrm{A}=\left[-x^{3}+3 x^{2}+9 x\right]_{-1}^{3}$
For substituting in numbers
For correct answer Area $=32$ square units.

(d) For correct int. i.e $\int_{-1}^{3}(2 x+9)-\left(2 x^{2}-2 x+3\right) d x$ (or equiv.)

For simplifying and integrating to $\mathrm{A}=\left[\frac{-2 x^{3}}{3}+2 x^{2}+6 x\right]_{-1}^{3}$
For substituting to answer $\mathrm{A}=21 \frac{1}{3}$ units squared
For proving $2: 1$ by $32 \div 3=10 \frac{2}{3} \ldots \times 2=21 \frac{1}{3}$ (or equiv.)
(pupils may use line and other curve, giving $A=10 \frac{2}{3}$, etc.)
10. (a) For replacing A_{s} with 24 to $\ldots 24=2 \pi r^{2}+2 \pi r h$

For making h the subject to answer
(b) For writing $V=\pi r^{2} h=\pi r^{2}\left[\frac{12}{\pi r}-r\right]$

For simplifying to given answer
.......... (1)
(c) For knowing to differentiate

For diff. correctly and knowing to solve to zero... $12-3 \pi r^{2}=0$
For answer for max volume .. $r^{2}=\frac{4}{\pi}$ or $r=\sqrt{\frac{4}{\pi}}$
For sub. in $A_{\text {base }}=\pi r^{2} \ldots=\pi \cdot \frac{4}{\pi}=4$ sq. metres.
[5 marks]
11. (a) For $\mathrm{M}(6,0,0)$ and $\mathrm{N}(12,2,0)$
(b) For selecting correct vectors i.e. $\overrightarrow{F M}$ and $\overrightarrow{F N}$

For $\overrightarrow{F M}=\left(\begin{array}{l}-6 \\ -4 \\ -4\end{array}\right)$ and $\overrightarrow{F N}=\left(\begin{array}{l}0 \\ -2 \\ -4\end{array}\right)$
For scalar product $\quad \overrightarrow{F M} \cdot \overrightarrow{F N}=24$
For both magnitudes $\sqrt{68}$ and $\sqrt{20}$ (or equiv.)
For $\cos \theta=\frac{24}{\sqrt{68} \times \sqrt{20}} \quad$ (or equiv.)
For ans. angle MFN $=49 \cdot 4^{\circ}$

$$
\text { Total }: 82 \text { marks }
$$

