Circles Objective Questions

1. The point $(2,-3)$ lies on the circle with equation $x^{2}+y^{2}+6 x-2 y+c=0$.

What is the value of c ?
A. -31
B. -13
C. -1
D. 9

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	2.4	C	0.62	0.57	CN	G10, A6	HSN 065

Let $(x, y)=(2,-3)$:

$$
\begin{aligned}
2^{2}+(-3)^{2}+6(2)-2(-3)+c & =0 \\
4+9+12+6+c & =0 \\
c & =-31 . \quad \text { Option } A
\end{aligned}
$$

2. A circle has centre $(2,4)$ and passes through $(-1,1)$.

What is the equation of the circle?
A. $(x-2)^{2}+(y-4)^{2}=\sqrt{18}$
B. $(x-2)^{2}+(y-4)^{2}=18$
C. $(x+2)^{2}+(y+4)^{2}=18$
D. $(x+2)^{2}+(y+4)^{2}=26$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	2.4	C	0.51	0.17	NC	G10, G9	HSN 063

$r^{2}=(2-(-1))^{2}+(4-1)^{2}=3^{2}+3^{2}=18$.
The equation is: $(x-2)^{2}+(y-4)^{2}=18$. Option B
3. The point $\mathrm{P}(-2,4)$ lies on the circle with equation $x^{2}+y^{2}-2 x+2 y-32=0$. What is the gradient of the tangent to the circle at P ?
A. $\frac{1}{3}$
B. $\frac{3}{5}$
C. 1
D. 3

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	2.4	C	0.7	0.06	NC	G11	HSN 056

Centre: $(1,-1)$.
$m_{\text {radius }}=\frac{4-(-1)}{-2-1}=-\frac{5}{3}$.
$m_{\text {tangent }}=\frac{3}{5}$ since the radius and tangent are perpendicular. Option B
4. A circle has equation $(x+1)^{2}+(y-2)^{2}=29$.

What is the gradient of the tangent to the circle at the point $(1,-3)$?
A. $\frac{2}{5}$
B. 0
C. $-\frac{5}{2}$
D. $-\frac{1}{2}$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	2.4	C	0.49	0.48	NC	G11	HSN 014

The centre is $(-1,2)$.
$m_{\text {radius }}=\frac{2-(-3)}{-1-1}=-\frac{5}{2}$.
$m_{\text {tangent }}=\frac{2}{5}$ since $m_{\text {radius }} \times m_{\text {tangent }}=-1 . \quad$ Option A
5. A circle has equation $x^{2}+y^{2}-2 x-4 y+1=0$.

Here are two statements about the circle:
I. The circle has centre $(-2,-4)$.
II. The circle has radius 1 .

Which of the following is true?
A. neither statement is correct
B. only statement I is correct
C. only statement II is correct
D. both statements are correct

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
A	2.4	C	0.77	0.57	CN	G9	HSN 072

Comparing to $x^{2}+y^{2}+2 g x+2 f y+c=0$, we have $g=-1, f=-2$ and $c=1$

The centre is $(1,2)$ and the radius is $\sqrt{g^{2}+f^{2}-c}=\sqrt{1+4-1}=2$.
6. A circle has equation $x^{2}+y^{2}-4 x+6 y+4=0$.

Here are two statements about the circle:
I. The circle has centre $(-2,3)$.
II. The circle has radius 3 units.

Which of the following is true?
A. neither statement is correct
B. only statement I is correct
C. only statement II is correct
D. both statements are correct

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
C	2.4	C	0.47	0.64	NC	G9	HSN 076

The centre is $(2,-3)$
$g=-2$
$f=3$
$c=4$
The radius is $\sqrt{g^{2}+f^{2}-c}$
$c=4$
$=\sqrt{4+9-4}$
$=\sqrt{9}$
$=3$ units.
Option C
7. A circle has equation $x^{2}+y^{2}-a x+2 b y+c=0$. The centre of the circle is $(-1,4)$.
What are the values of a and b ?
A.

a	b
2	-4
-1	-2
-2	-4
2	4

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
C	2.4	C	0.33	0.23	NC	G9	HSN 19

The centre is $\left(\frac{a}{2},-b\right)$.

So $\frac{a}{2}=-1$ i.e. $a=-2$,
and $-b=4$ i.e. $b=-4$
Option C
8. A circle has centre $(2,-1)$, and has the y-axis as a tangent.

What is the equation of the circle?
A. $(x+2)^{2}+(y-1)^{2}=4$
B. $(x-2)^{2}+(y+1)^{2}=4$
C. $(x+2)^{2}+(y-1)^{2}=1$
D. $(x-2)^{2}+(y+1)^{2}=1$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	2.4	C	0.55	0.41	NC	G9, G10	HSN 087

The radues is 2 units.

$$
(x-2)^{2}+(y+1)^{2}=4
$$

Option B
9. What is the largest range of values of k for which the equation $x^{2}+y^{2}-6 x+4 y+k=0$ represents a circle?
A. $k<52$
B. $k<13$
C. $k>-13$
D. All real k

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
B	2.4	C	0.49	0.3	NC	G9, G15	HSN 16

$$
\left.\begin{array}{rl}
\text { A circle when } g^{2}+f^{2}-c>0 \text { where } \begin{array}{rl}
g & =-3 \\
f & =2 \\
c & =k
\end{array} \\
\qquad \begin{array}{rl}
\text { The radius is }
\end{array} \\
9+4-k & >0 \\
k & <13 \\
\sqrt{g^{2}+f^{2}-c}
\end{array}\right\} \text { Option } B
$$

