Higher Mathematics - Practice Examination A

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Higher Grade - Paper I

Time allowed - 2 hours

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used.
3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^{2}+y+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\left.\sqrt{(} g^{2}+f^{2}-c\right)$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cc}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{lr}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. PQRS is a rhombus. Vertices P, Q and S have coordinates $(-5,-4),(-2,3)$ and $(2,-1)$ respectively.

Establish the coordinates of the fourth vertex R and hence, or otherwise, find the equation of the diagonal PR.
2. A circle has as its equation $x^{2}+y^{2}-4 x+3 y+5=0$.

Find the equation of the tangent at the point $(3,-2)$ on the circle.
3. Find $f^{\prime}(x)$ when $f(x)=\frac{x^{3}-6 \sqrt{x}}{x^{2}}$.
4. A function is given as $g(x)=\frac{2}{x}$.
(a) State a suitable domain for this function on the set of real numbers.
(b) Evaluate $g\left(g\left(\frac{1}{2}\right)\right)$.
(c) Find a formula for $g(g(x))$ in its simplest form.
5. Given that $\int_{1}^{a}(5-2 x) d x=2$.

Find algebraically the two possible values of a.
6. The diagram below shows the graph of $y=f(x)$.

Make a rough sketch of the graph of $y=f(-x)+6$.
7. Given that $x-1$ is a factor of $x^{3}+k x^{2}-5 x+6$, find the value of k and hence fully factorise the expression.
8. The famous Gateway Arch in the United States is parabolic in shape.

Figure 2 shows a rough sketch of the arch relative to a set of rectangular axes.

Figure 1

From figure 2 establish the equation connecting h and x.
9. Given that the points $(3,-2),(4,5)$ and $(-1, a)$ are collinear , find the value of a.
10. A and B are the points $(-2,-1,4)$ and $(3,4,-1)$ respectively.

Find the coordinates of the point C given that $\frac{A C}{C B}=\frac{3}{2}$.
11. The diagram below shows the depth of water in a small harbour during a standard 12 -hour cycle.

It has been found that the depth of water follows the relationship $d=6 \sin 30 t$, where d is the depth in metres (above or below a mean height) and t is the time elapsed in hours from the start of the cycle.

Calculate the value of h, the length of time, in hours and minutes, that the depth in the harbour is greater than or equal to 4 metres.
Give your answer to the nearest minute.
12. Find the derivative, with respect to x, of $\frac{1}{6}(1+2 x)^{3}+\sin 2 x$.
13. Solve algebraically the equation

$$
\begin{equation*}
3 \cos 2 x^{\circ}-\cos x^{\circ}-2=0, \quad 0 \leq x<360 \tag{6}
\end{equation*}
$$

14. The diagram opposite represents part of a belt driven pulley system for a compact disc turntable.

P and Q are the centres of the circles C_{1} and C_{2} respectively. $\mathbf{P Q}=\mathbf{6}$ units .
PR is parallel to the x-axis and is a tangent to circle C_{2}
The coordinates of P are $(2 \cdot 8,2)$.
(a) Given that angle $\mathrm{QPR}=30^{\circ}$, establish the coordinates of the point
 Q, rounding any calculations to one decimal place where necessary.
(b) Hence write down the equation of circle C_{2}.
15. A radioactive substance decays according to the formula $M_{t}=M_{o} 8^{-0.3 t}$, where M_{o} is the intitial mass of the substance, M_{t} is the mass remaining after t years.

Calculate, to the nearest day, how long a sample would take to half its original mass.
16. A sequence of numbers is defined by the recurrence relation $U_{n+1}=k U_{n}+c$, where k and c are constants.
(a) Given that $U_{0}=10, U_{1}=14$ and $U_{2}=17 \cdot 2$, find algebraically, the values of k and c.
(b) Calculate the value of E given that $E=\frac{3}{4}(L-2)$, where L is the limit of this sequence.
17. A function is given as $f(\theta)=\sin ^{2} \theta+2 \sin \theta-3$ for $0 \leq \theta \leq 2 \pi$.
(a) Express the function in the form $f(\theta)=(\sin \theta+a)^{2}+b$ and write down the values of a and b.
(b) Hence, or otherwise, state the minimum value of this function and the corresponding replacement for θ.
18. A group of soldiers decide the best way to scale a cliff is to fire a metal hook, with a rope attached, over the top of the cliff and hope it catches on to something solid.

It is known that the firing device will launch the rope in such a way that the height, H feet, above the ground is given by

$$
H(d)=d-\frac{d^{2}}{330}
$$

where d feet is the horizontal distance travelled.
Given that the height of the cliff is 84 feet, will this device be able to throw the rope high enough ? Justify your answer with the appropriate working.

1. For establishing coordinates $R(5,6)$

For gradient of PR , $m_{p r}=1$
Then for equation $\quad y=x+1$ \qquad
2. For establishing the centre $\mathrm{C}\left(2,-\frac{3}{2}\right)$

For finding the gradient of the radius $\mathrm{m}_{\mathrm{r}}=-\frac{1}{2}$
For gradient of tangent $\quad \mathrm{m}_{\mathrm{tan}}=2$
For using $\quad y-b=m(x-a)$, or equivalent, with $\mathrm{m}=2$ and $(3,-2)$
For equation $\quad y=2 x-8$
3. For $f(x)=x^{-2}\left(x^{3}-6 x^{\frac{1}{2}}\right)$

$$
\begin{equation*}
=x-6 x^{-\frac{3}{2}} \tag{1}
\end{equation*}
$$

(2) (1 for each part)
$f^{\prime}(x)=1+9 x^{-\frac{5}{2}}$
[4 marks]
4.
(a) For $x \neq 0$
[1 mark]
(b) For $\quad g\left(\frac{1}{2}\right)=\frac{2}{\frac{1}{2}}=4 \quad$ (or equivalent)

$$
\begin{equation*}
g\left(g\left(\frac{1}{2}\right)\right)=\frac{2}{4}=\frac{1}{2} \tag{1}
\end{equation*}
$$

(c) For $\quad g(g(x))=\frac{2}{\frac{2}{x}}$

$$
\begin{equation*}
=\frac{2 x}{2} \tag{1}
\end{equation*}
$$

\qquad

$$
\begin{equation*}
=x \tag{1}
\end{equation*}
$$

\qquad
5. For $\left[5 x-x^{2}\right]_{1}^{a}=2$
$\left(5 a-a^{2}\right)-(5-1)$
$a^{2}-5 a+6=0$
For answer $a=2$ or $a=3$
6. For reflecting in y-axis \qquad
For translation
(1)

For annotation $-3 \& 6$ - (2)
[4 marks]

7. For deciding on method (synthetic division) and dividing by 1

For

1 | 1 | k | -5 | 6 | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $k+1$ | $k-4$ | | |
| | 1 | $k+1$ | $k-4$ | $k+2$ |

For $\quad \mathrm{k}+2=0 \quad \therefore \quad k=-2$
(For $f(1)=0$ etc., full marks if k correct)
For answer $\quad(\mathrm{x}-1)(\mathrm{x}-3)(\mathrm{x}+2)$
.......... (1)
(1) [4 marks]
8. For $h=k\left(2500-x^{2}\right) \quad$ (or equiv.)

For realising that at $x=0 \quad h=2500 \times k=100$
For $k=\frac{1}{25}$
$\therefore \quad h=\frac{1}{25}\left(2500-x^{2}\right) \quad$ (no marks off for not stating final equ.)
9. Deciding on correct method

For $\quad \frac{5+2}{4-3}=\frac{a-5}{-1-4} \quad$ (or equiv.)
\qquad

For answer $\quad a=-30$ \qquad
10. For $2 \overrightarrow{A C}=3 \overrightarrow{C B}$

For $\quad 2(\underset{\sim}{c}-\underset{\sim}{a})=3(\underset{\sim}{b}-\underset{\sim}{c})$

$$
\begin{equation*}
5 \underset{\sim}{c}=3 \underset{\sim}{b}+2 \underset{\sim}{a} \tag{1}
\end{equation*}
$$

For substituting components
For answer $\quad \mathrm{C}(1,2,1)$

* (no marks off if left in component form)

11. For $6 \sin 30 t=4$

For $\quad 30 t=41 \cdot 8^{\circ} \quad$ and $\quad 30 t=138 \cdot 2^{\circ}$
For $t=1$ hour 24 min . and $t=4$ hours 36 min .
(1)

For answer $h=3$ hours 12 min .
12. For $\frac{1}{2}(1+2 x)^{2} .2+2 \cos 2 x$
(4)
(split as follows $\frac{1}{2}(1+2 x)^{2} ; \times 2 ; 2 ; \cos 2 x \ldots . .1$ mark each)
[4 marks]
13. For $3\left(2 \cos ^{2} x-1\right)-\cos x-2=0$

$$
\begin{equation*}
6 \cos ^{2} x-\cos x-5=0 \tag{1}
\end{equation*}
$$

For $\quad \cos x=-\frac{5}{6} \quad$ or $\quad \cos x=1$
Then $x=0,146 \cdot 4,213 \cdot 6$ (1 each)
(no marks off for 360)
14.
(a) For correct strategy e.g. using trig.
For $\mathrm{PR}=5 \cdot 2$
(1) and $\mathrm{QR}=3$
For coordinates $\quad \mathrm{Q}(8,5)$
(1)
[4 marks]
(b) For establishing that $r=3$

For equation $\quad(x-8)^{2}+(y-5)^{2}=9$
15. For realising $\quad 8^{-0.3 t}=0 \cdot 5$

For taking $\log \mathrm{s} \quad \log 8^{-0.3 t}=\log 0 \cdot 5$
Then $\quad-0 \cdot 3 t \log 8=\log 0 \cdot 5$

$$
\begin{equation*}
-0 \cdot 3 t=\frac{\log 0 \cdot 5}{\log 8} \tag{1}
\end{equation*}
$$

For answer

$$
\begin{equation*}
t=406 \text { days } \tag{1}
\end{equation*}
$$

[5 marks]
i) no marks off if pupils assume an initial mass.
ii) accept 405 or other answer if pupil has rounded early.
16. (a) For the system

$$
\left.\begin{array}{rl}
14 & =10 k+c \tag{2}\\
17 \cdot 2 & =14 k+c
\end{array}\right\}
$$

$$
\text { For } \quad k=0 \cdot 8 \quad \text { and } \quad c=6 \quad(1 \text { each })
$$

(b) For knowing $\quad L=\frac{b}{1-a}$ (1)

$$
\therefore \quad L=\frac{6}{1-0 \cdot 8}=30
$$

Then answer

$$
\begin{equation*}
E=21 \tag{1}
\end{equation*}
$$

17. (a) For $\left[(\sin \theta+1)^{2}-1\right]-3$ \qquad
$(\sin \theta+1)^{2}-4$

$$
\begin{equation*}
\therefore \quad a=1 \text { and } b=-4 \tag{1}
\end{equation*}
$$

(No marks off if a and b are not implicitly or explicitly stated.)
(b) Minimum value of -4
.......... (1)

$$
\begin{equation*}
\text { (a) } \quad \theta=\frac{3 \pi}{2} \tag{1}
\end{equation*}
$$

[2 marks]
18. Pupil adopts strategy to locate maximum T.P. \qquad
For finding derivative $\quad H^{\prime}(d)=1-\frac{d}{165}$
For equating derivative to zero
Then for value of d at turning point $d=165$ feet
For evaluating $H(165)=82.5$ feet
Rope will not be thrown high enough
[6 marks]

Higher Mathematics - Practice Examination A

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS
 Higher Grade - Paper II

Time allowed - 2 hours $\mathbf{3 0}$ minutes

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used.
3. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^{2}+y+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{\left(g^{2}+f^{2}-c\right)}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
& \sin 2 A=2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cr}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{lr}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted

1. Triangle $A B C$ has as its vertices $A(-18,6), B(2,4)$ and $C(10,-8)$.
L_{1} is the median from A to BC.
L_{2} is the perpendicular bisector of side AC.

(a) Find the equations of L_{1} and L_{2}.
(b) Hence find the coordinates of T .
2. Two functions are defined as $f(x)=p x^{2}-1$ and $h(x)=\frac{5 x+q}{2}$, where p and q are constants.
(a) Given that $f(2)=h(2)=7$, find the values of p and q.
(b) Show that $h(f(x))=\frac{1}{2}\left(10 x^{2}-1\right)$.
(c) Find the value of the constant k when $2[h(f(x))]-4=k[f(x)]$.
3. The diagram below is a sketch of a roller safety switch. If the device is tilted clockwise the small cylinder will roll to the right thus breaking the circuit.

A schematic of the device is shown below with a pair of rectangular axes added.
The equation of the dotted line through the centre of the circle, C , is $y=2 x-5$.
B has coordinates $(1,2)$ as shown.
The line through the points A and T is a tangent to the circle at A .

$$
y=2 x-5
$$

(a) Establish the equation of the circle.
(b) Hence find the coordinates of point A.
(c) Find the equation of the line AT and the coordinates of T .
4. The diagram opposite shows part of a wrought iron plant pot hanger attached to a wall .

Relative to the axes drawn the line OA has as its equation $y=x$ and the curve from O to A has as its equation $y=\frac{1}{11}\left(22 x-x^{2}\right)$.
(a) Establish the coordinates of the point A.
(b) The shaded area between the curve and the line represents a small decorative wooden plaque .
Given that the units are in inches, calculate the area of the wooden plaque to the nearest square inch.
5. Three military aircraft are on a joint training mission. Their positions relative to each other, within a three dimensional framework, are shown in the diagram below :

(a) Show that the three aircraft are collinear .
(b) Given that the actual distance between Z and Y is 42 km , how far away from Z is X ?
(c) Following further instructions aircraft Y moves to a new position $(50,15,-8)$.

The other two aircraft remain where they are .
For this new situation, calculate the size of $\angle X Y Z$.
6. The curve shown below has as its equation $y=3 x^{5}-5 x^{3}$.

Find algebraically the coordinates of the points A and B.
7. The two cuboids below have the same volume, $V_{1}=V_{2}$.

Cuboid 1 has dimensions 5 by x by $x-k^{2}$ and Cuboid 24 by $x+k$ by $x-k$ as shown.

All lengths are in centimetres.
Cuboid 2

(a) By writing down expressions for the two volumes, V_{1} and V_{2}, and equating them, show that the following equation can be constructed

$$
\begin{equation*}
x^{2}-5 k^{2} x+4 k^{2}=0 \tag{4}
\end{equation*}
$$

(b) Given that $k>0$, find the value of k for which the equation $x^{2}-5 k^{2} x+4 k^{2}=0$ has equal roots.
(c) Hence solve the equation for x and calculate the volume of each cuboid when k takes this value.
8. Triangle $P Q R$, shown below, has vertices $P(-4,-3), Q(4,6)$ and $R(11,3)$. The altitude has been drawn from Q to PR .

(a) Side PR has as its equation $5 y=2 x-7$. Find the equation of the altitude QT.
(b) Hence find the coordinates of T.
(c) Calculate the area of the triangle in square units.
9. Over a period of time the effectiveness of a standard spark plug slowly decreases. It has been found that, in general, a spark plug will loose 8% of its burn efficiency every two months while in average use.
(a) A new spark plug is allocated a Burn Efficiency Rating (BER) of 120 units. What would the $B E R$ be for this plug after a year of average use ?
Give your answer correct to one decimal place.

After exhaustive research, a new fuel additive was developed.
This additive, when used at the end of every four month period, immediately allows the $B E R$ to increase by 8 units.

A plug which falls below a $B E R$ of 93 units should be replaced.
What would be the maximum recommended lifespan for a plug, in months, when using this additive?
(c) The manufacturer is close to developing a new plug which contains a revolutionary double core made from titanium.
Because of its "hot burn" qualities it can operate effectively down to a $B E R$ of 50 units.
Would this new plug ever need to be replaced if it is used in conjunction with the additive?
Your answer must be accompanied with the appropriate working.
Would it be wise for the manufacturer to make this plug available to the general public? Explain.
10. The diagram below shows triangle ABC in which $\mathrm{BC}=2 \mathrm{AB}$. Angle $\mathrm{BAC}=x^{\circ}$ and angle $\mathrm{ABC}=120^{\circ}$.

(a) Show that $\frac{a}{\sin x^{\circ}}=\frac{\frac{1}{2} \mathrm{a}}{\sin (60-x)^{\circ}}$.
(b) By simplifying this equation show that $2 \sin x^{\circ}=\sqrt{3} \cos x^{\circ}$.
(c) Hence solve this equation to find the value of x°.

1. (a) For mid - point of $B C \quad, M(6,-2)$

For $\quad m_{A M}=-\frac{1}{3}$
Then for equation $\quad L_{1} \Rightarrow y=-\frac{1}{3} x$
For mid - point of AC , $N(-4,-1)$
For $\quad m_{A C}=-\frac{1}{2}$
Then for perpendicular $m_{L_{2}}=2$
Then for equation $\quad L_{2} \Rightarrow y=2 x+7$
(b) For correct strategy and equating

For $\quad x=-3$
Then for $\quad y=1$ giving $T(-3,1)$
2. (a) For $f(2)=4 p-1=7$

$$
\begin{equation*}
h(2)=\frac{10+q}{2}=7 \tag{1}
\end{equation*}
$$

Then for $\quad p=2$ and $q=4$
[3 marks]
(b) For $\quad h(f(x))=\frac{5\left(2 x^{2}-1\right)+1}{2}$
$=\frac{1}{2}\left(10 x^{2}-1\right) \quad$ (or equivalent)
[2 marks]
(c) For $2\left[\frac{1}{2}\left(10 x^{2}-1\right)\right]-4=k\left(2 x^{2}-1\right)$

$$
\begin{equation*}
5\left(2 x^{2}-1\right)=k\left(2 x^{2}-1\right) \tag{1}
\end{equation*}
$$

(1) (or equiv.)
$\therefore k=5$
(1)
[3 marks]
3. (a) For knowing to substitute $x=1$ into $y=2 x-5$

For finding $y=-3 \quad \therefore$ centre has coordinates $(1,-3)$
For establishing the radius i.e. $r=5$
(1)

For equation $(x-1)^{2}+(y+3)^{2}=25$
(b) For knowing to sub. $y=0$ into equation of circle

For establishing quadratic and solving to $x=-3$ or $x=5$
For choosing -3 and then giving coordinates of $\mathrm{A}(-3,0)$
[3 marks]
(c) For gradient of radius $\mathrm{m}_{\mathrm{CA}}=-\frac{3}{4}$

For gradient of tangent $\mathrm{m}_{\mathrm{AT}}=\frac{4}{3}$
For using correct point and gradient, $\mathrm{m}=\frac{4}{3}$ and $(-3,0)$
Equation of tangent $3 y=4 x+12$
For knowing the y -coordinate of T is 2
For substitution and solving to $x=-\frac{3}{2}$ then $\mathrm{T}\left(-\frac{3}{2}, 2\right)$
(1) [6 marks]
4. (a) For $x=\frac{1}{11}\left(22 x-x^{2}\right)$
......... (1)
For solving to $x=0$ or $x=11$.......... (1)
Then for answer $\quad \mathrm{A}(11,11)$ \qquad
(b) For Area $=\int_{0}^{11}\left(\frac{1}{11}\left(22 x-x^{2}\right)-x\right) d x$

$$
\begin{equation*}
=\int_{0}^{11}\left(x-\frac{1}{11} x^{2}\right) d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\left[\frac{x^{2}}{2}-\frac{x^{3}}{33}\right]_{0}^{11} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\left[\left(\frac{121}{2}-40 \frac{1}{3}\right)-(0)\right] \tag{1}
\end{equation*}
$$

For answer $=20$ square inches \qquad
5. (a) For choosing any two displacements, 1 mark each.
i.e. $\quad \overrightarrow{Z Y}=\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right) \quad$ and $\quad \overrightarrow{Y X}=\left(\begin{array}{c}8 \\ -4 \\ 2\end{array}\right)$

For "since $\overrightarrow{Y X}=2 \overrightarrow{Z Y}$, then x, y and z are collinear" (or equivalent)
(1) [$\mathbf{3}$ marks]
(b) For answer 126 km
(1) [1 mark]
(c) For $\quad \overrightarrow{Y X}=\left(\begin{array}{c}-30 \\ 1 \\ 10\end{array}\right) \quad$ and $\quad \overrightarrow{Y Z}=\left(\begin{array}{c}-42 \\ 7 \\ 7\end{array}\right)$

For formula $\quad \cos y=\frac{\overrightarrow{Y X} \cdot \overrightarrow{Y Z}}{|Y X| \cdot|Y Z|} \quad$ (or equiv.)
For $\quad|Y X|=\sqrt{1001}$ and $|Y Z|=\sqrt{1862}$
For $\quad \overrightarrow{Y X} \cdot \overrightarrow{Y Z}=1337$ \qquad
Then answer $\quad \angle X Y Z=11.7^{\circ}$ \qquad (1) [5 marks]
6. For A : $\quad \frac{d y}{d x}=15 x^{4}-15 x^{2}$

$$
\begin{equation*}
\text { For } \quad 15 x^{4}-15 x^{2}=0 \tag{1}
\end{equation*}
$$

For $x=-1 \quad$.......... (1)
For y - coordinate @ $x=-1$ then $\mathrm{A}(-1,2)$
For B : \quad For $\quad 3 x^{5}-5 x^{3}=0$

$$
\begin{equation*}
\text { For } \quad \mathrm{x}=0 \text { or } \mathrm{x}= \pm \sqrt{\frac{5}{3}} \tag{1}
\end{equation*}
$$

Then for $\quad B\left(0, \sqrt{\frac{5}{3}}\right)$
[7 marks]
7.
(a) For $V_{1}=5 x^{2}-5 x k^{2}$

$$
\begin{equation*}
V_{2}=4 x^{2}-4 k^{2} \tag{1}
\end{equation*}
$$

For $\quad 5 x^{2}-5 x k^{2}=4 x^{2}-4 k^{2}$
Then $x^{2}-5 x k^{2}+4 k^{2}=0$
[4 marks]
(b) For $b^{2}-4 a c=0$

For $\quad a=1 \quad, \quad b=-5 k^{2}$ and $c=4 k^{2}$
For $\quad 25 k^{4}-16 k^{2}=0$
For answer $\quad k=4 / 5$
[4 marks]
(c) For $x^{2}-3 \cdot 2 x+2 \cdot 56=0$

$$
\begin{equation*}
\therefore \quad x=1.6 \tag{1}
\end{equation*}
$$

For each cuboid $\quad V=7.68 \mathrm{~cm}^{3}$
8.
(a) $\quad m_{P R}=2 / 5 \quad \therefore \quad m_{Q T}=-5 / 2$
\qquad
For equation $2 y+5 x=32$
(b) For deciding to solve $\left.\begin{array}{r}2 y+5 x=32 \\ 5 y-2 x=-7\end{array}\right\}$

For $y=1$
For $x=6$ then $T(6,1)$
(c) Various methods: $\quad|P R|=\sqrt{261}$

$$
\begin{equation*}
|Q T|=\sqrt{29} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { For } \quad \text { Area }_{\Delta}=1 / 2 \times \sqrt{261} \times \sqrt{29} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=43 \cdot 5 \text { square units } \tag{1}
\end{equation*}
$$

9. (a) For correct multiplier i.e. 0.92

For $\quad B E R=(0.92)^{6} \times 120$
$=72 \cdot 8$ units
(1)
(b) For $U_{n+1}=(0.92)^{2} \times U_{n}+8$ (or equiv.)

For setting out calculations
For realising to look at lower value (i.e. before the 8 is added)

For looking at $(0 \cdot 92)^{1}$ for a 2 month period after U_{2}
For answer after 10 months
(c) For knowing formula for limit (or equiv.)

For $L=\frac{8}{1-(0 \cdot 92)^{2}}=52$ units
For then lower limit 52-8=44
" It would need to be replaced but not often"
(1)
[3 marks]
(d) "Sales would perhaps burn out !!! " (or equiv.)
[1 mark]
10. (a) For stating that $\mathrm{AB}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} a$

For giving $\angle C=180-(120+x)=60-x$
Applying the sine rule to answer
(b) For $a \sin (60-x)=\frac{1}{2} a \sin x$
$2 \sin (60-x)=\sin x$
$2[\sin 60 \cos x-\cos 60 \sin x]=\sin x$
For putting in exact values
(1)
$\sqrt{3} \cos x=2 \sin x$
[5 marks]
(c) For $\tan x=\frac{\sqrt{3}}{2}$

For answer $\quad x=40 \cdot 9^{\circ}$

