7. A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1

The frame of a shelter is to be made of rods of two different lengths:

- x metres for top and bottom edges;
- · y metres for each sloping edge.

Condition 2

The frame is to be covered by a rectangular sheet of material.

The total area of the sheet is 24 m².

(a) Show that the total length, L metres, of the rods used in a shelter is given by

$$L = 3x + \frac{48}{x}.$$

3

(b) These rods cost £8.25 per metre.

To minimise production costs, the total length of rods used for a frame should be as small as possible.

- (i) Find the value of x for which L is a minimum.
- (ii) Calculate the minimum cost of a frame.

7

(a)
$$A = 24y$$

 $24y = 24$ so $y = \frac{12}{2}$
Length = $34 + 4y$ {substitute $y = \frac{12}{2}$ }
Length = $34 + 4(\frac{12}{2}) = 34 + \frac{48}{2}$

(b) (i)
$$L(x) = 3x + 48x$$
 $L(x) = 3x + 48x$
 $L(x) = 3 - 48x$

Let $3 - 48 = 0$

must check if $x = 4$ min or max $3x^2 - 48 = 0$ then $x = 4$
 $L''(x) = 96$
 $L''(4) = positive of x = 4$ is a minimom V

(ii)
$$cost = 8.25(3x+4y) = 8.25(3x+4+4x3)$$

= $8.25(3y)$
= 198