Marked Homework 7 - Optimisation

1. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end. The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron.
Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the
 solid.
2. The shaded rectangle on this map represents the planned extension to the village hall. It is hoped to provide the largest possible area for the extension.

The coordinate diagram represents the right angled triangle of ground behind the hall. The extension has length l metres and breadth b metres, as shown. One corner of the extension is at the point $(a, 0)$.

(a) (i) Show that $l=\frac{5}{4} a$.
(ii) Express b in terms of a and hence deduce that the area, $A \mathrm{~m}^{2}$, of the extension is given by $A=\frac{3}{4} a(8-a)$.
(b) Find the value of a which produces the largest area of the extension.
3. The parabolas with equations $y=10-x^{2}$ and $y=\frac{2}{5}\left(10-x^{2}\right)$ are shown in the diagram below.

A rectangle PQRS is placed between the two parabolas as shown, so that:

- Q and R lie on the upper parabola.
- $R Q$ and SP are parallel to the x-axis.
- T , the turning point of the lower parabola, lies on SP.
(a) (i) If TP $=x$ units, find an expression for the length of PQ .
(ii) Hence show that the area, A, of rectangle PQRS is given by

$$
A(x)=12 x-2 x^{3} .
$$

(b) Find the maximum area of this rectangle.
4. An oil production platform, $9 \sqrt{3} \mathrm{~km}$ offshore, is to be connected by a pipeline to a refinery on shore, 100 km down the coast from the platform as shown in the diagram.

The length of underwater pipeline is $x \mathrm{~km}$ and the length of pipeline on land is $y \mathrm{~km}$. It costs $£ 2$ million to lay each kilometre of pipeline underwater and $£ 1$ million to lay each kilometre of pipeline on land.
(a) Show that the total cost of this pipeline is $£ C(x)$ million where

$$
\begin{equation*}
C(x)=2 x+100-\left(x^{2}-243\right)^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

(b) Show that $x=18$ gives a minimum cost for this pipeline.

Find this minimum cost and the corresponding total length of the pipeline.
[END OF QUESTIONS]

